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There are two kinds of  particles in the world:  

fermions and bosons 

Fermions: half-integral spin electrons, protons, neutrons, 2H, 

6Li,… are forbidden by the Pauli exclusion principle to have 

more than two of  the same type in the same state. They are 

the “loners” of  the quantum world. If  electrons were not 

fermions, we would not have chemistry. Fermion obey the 

rules of  Fermi-Dirac statistics. 

Bosons: integral spin photons, 1H, 7Li, 23Na, 87Rb, 

133Cs,… love to be in the same state. They are the joiners of  

the quantum world. If  photons were not bosons, we would 

not have lasers. Bosons obey the rules of  Bose-Einstein 

statistics. 



 Quantum statistics 

2001 Nobel Prize Quantum Degeneracy 
 

1999 



BEC of  molecules BCS fermionic superfluidity  

Interaction strength tunable via Feshbach resonances 

 BCS-BEC Crossover 

BCS Theory Gross-Pitaevskii 

equation 



Global progress (experiment) 
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realization 

(Duke) observation of  

superfluidity 

imbalanced  

superfluidity? 

universal  

thermodynamics 

ferromagnetism? 

uniform EoS (FL?) 

pseudo-gap? 

FFLO? 

Tan relations 

rf and Bragg spectroscopy Efimov physics? 

condensate fraction 

collective modes 

second sound 

solitons 
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Challenging many-body problem 

B0 Temperature 

T = 0 T = TF 

Attractive interaction 

BCS 

BEC 

Crossover 

T TF 

(as→∞) 

Difficulty:  

non-perturbative, strong correlations at all temperatures! 



2002 04 06 08 10 12 

T-matrix approximation? Operator product expansion? 

Quantum Monte Carlo? 

Large-N, -expansion, RG? 

Virial expansion 

Tan relations! 

Few-body solutions 

1D exact solutions 

Color: Black (tried, experienced), blue (to be tried), red 

(interested)  

 Global progress (theory) 

Mean field 



 
 

             

• Virial expansion: A traditional but “new” method 

 

• Few-particle exact solutions as the input to virial expansion 

 

• Virial expansion: Applications 

 

 

 

 

 
 

 

 

• Conclusions and outlooks 

Outline 

Equation of  State  
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Dynamic Structure Factor SP Spectral Function  Tan’s Contact 



How to understand these experimental results? 

unitary single-particle spectral function unitary dynamic structure factor 

It is a central, grand challenge to theorists, due 

to the lack of  small interaction parameter! 

unitary equation of state (static) 



BEC-BCS crossover: (theoretical challenge) 

Few-particle  

solutions 

Many-Body physics: 

 No small interaction  

parameter! 

Blume, Daily, Stecher, Greene; 

Busch, Englert, Rzazewski, Wilkens; 

Werner, Castin; 

Kestner, Duan; 

Julienne, Bohn, Tiesinga; 

…… 

Bridge? 

MB physics  

at short-range: 

Tan relations  
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MB physics  

at high T: 

Virial expansion 



Virial expansion:  

A traditional but “new” method 



High Temperature 

Low Temperature 

Classical Particles 

T

Thermal fluctuation 

ABC of virial expansion (VE) 
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ABC of virial expansion (VE) 
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To obtain bn, just solve a “n-body” problem and find out the energy levels ! 
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b2: T.-L. Ho & E. J. Mueller, PRL 92, 160404 (2005). 

b3: Liu, HH & Drummond, PRL 102, 160401 (2009); PRA 82, 023619 (2010). 

ABC of virial expansion (VE) 



n-th virial coefficient of a non-interacting Fermi gas 

Numerically, we calculate 
)1(

nnn
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ABC of virial expansion (VE) 

for a trapped gas! 



What’s new here?  

ABC of virial expansion (VE) 

The harmonic trap helps! The discrete energy level helps to 
calculate the N-cluster partition function. 

For a homogeneous system, where the energy level is continuous, it seems impossible to 

calculate directly virial coefficient using N-cluster partition function, i.e.,  3
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For the second virial coefficient, Beth & Uhlenbeck (1937): 

0: s-wave phase shift;  

: de Broglie wavelength. 

For the third coefficient, complicated diagrammatic calculations [Rupak, PRL 98, 090403 (2007)] : 
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How to obtain homogeneous virial coefficient? 

ABC of virial expansion (VE) 

LDA 

Let us consider the unitarity limit and use LDA [(r) =  - V(r)],  

 Liu, HH & Drummond, PRL 102, 160401 (2009); PRA 82, 023619 (2010). 
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Validity of  virial expansion? (unitarity case) 

ABC of virial expansion (VE) 

Unitary z(T) from the ENS data; see, HH, Liu & Drummond, New. J. Phys. 12, 063038 (2010).  

Tc 

TVE ~ 0.5TF 

TVE ~ 0.7TF 

Non-trivial re-

summation of virial 

expansion terms? i.e., 

Páde approximation? 



Virial expansion of  single-particle spectral function 

virial expansion functions: 

HH, Liu, Drummond & Dong, PRL 104, 240407 (2010). 

ABC of virial expansion (VE) 

To obtain An, solve a “n-body” problem and the wave functions! 



Quantum virial expansion of  DSF 

virial expansion functions: 

HH, Liu, & Drummond, PRA 81, 033630 (2010). 

VE for dynamic 

susceptibility:  

Finally, we use  

ABC of virial expansion (VE) 



Few-particle exact solutions: 

As the input to virial expansion 
Blume, Daily, Stecher, Greene; 

Busch, Englert, Rzazewski, Wilkens; 

Werner, Castin; 

Kestner, Duan; 

Julienne, Bohn, Tiesinga; 

…… 



Few-particle solutions  

CM motion: 

Relative motion: 

U is the second Kummer function   

Two-particle problem in harmonic traps 

See, Busch et al., Found. Phys. (1998) 

The solution:   

is determined from the BP condition 

BP condition 



Few-particle solutions  

[See, Busch et al., Found. Phys. (1998)] Analytic result is known at unitarity:  
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Two-particle problem in harmonic traps 



Few-particle solutions  

Three-particle problem in harmonic traps 

CM motion: 

Relative motion: 
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Liu, HH & Drummond, PRA 82, 023619 (2010) 

is determined from the BP condition 

BP condition:  



Relative energy levels “E” as a function of  the inverse scattering length (l = 1 section).  

Few-particle solutions  

Three-particle problem in harmonic traps 



(P13: particle exchange operator) 

Separable wavefunctions ! 
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See, Werner & Castin, PRL (2006): 

Few-particle solutions  

Three-particle problem at unitarity 



Virial expansion: Applications 



VE applications (EoS) 

Virial coefficient at unitarity (uniform case) 

Nascimbène et al.,  Nature, 25 February 2010. 
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Theory data: 

HH et al., New J. Phys. 12, 063038 (2010). 

Expt. data:  

Calculated from h() of  ENS’s Unitarity EoS 
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Here,  

VE applications (EoS) 

Unitary EoS at high T: trapped case  



Trapped spectral function (second order only)  

Expt.: JILA,   

Nature Physics (2010). 

Theory: HH et al.,  

PRL 104, 240407 (2010). 

VE applications (spectral function) 
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VE applications (dynamic structure factor) 

Trapped dynamic structure factor (second order only)  

Expt.: Kuhnle, Hoinka, Dyke, HH, Hannaford & Vale, PRL, 106 170402 (2011). 

Theory: HH, Liu, & Drummond, PRA 81, 033630 (2010). 
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c2 c3 

At the unitarity limit, we find that, c2=1/ and c3≈-0.141.  to be used as a benchmark! 

Hu, Liu & Drummond, NJP 13, 035007(2011). 

Ivirial 

VE applications (Tan’s contact) 

Note that, 

cn(trap)=(1/n3/2)cn(homo) 

I 



VE applications (Tan’s contact) 

Trapped contact at unitarity (theory vs experiment) 

Theory: HH, Liu & Drummond, NJP (2011). 

Expt.: Kuhnle, Hoinka, Dyke, HH, Hannaford & Vale, PRL, 106 170402 (2011). 



EoS 

SP Spectral Function  

Taking home messages 

Virial expansion solves completely the large-T strong-correlated problem! 

DSF 

Tan’s contact 



Outlooks (improved virial expansion) 

 Can we improve A(k,) and S(k,) to the 3rd and 4th order? 

 

 

 

 

 

 

 Efimov physics or triplet pairing response in A(k,) and S(k,) ? 

Daily & Blume; 

Stecher & Greene; 

Werner & Castin; 

…… 

 i.e., based on the 3- and 4-body solutions by  

■  4th order virial coefficient: experiment              and theory  096.0
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