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Quantum dynamics

ULTRALOW temperatures down to 1nK )
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Quantum dynamics

ULTRALOW temperatures down to 1nK )

Atoms are trapped in a hard vacuum

Cooling to nanoKelvins or less

Can have either bosons or fermions

°

°

°

@ Atom ‘lasers’ - atoms behave as quantum objects

@ Correlations - mean field theory doesn't always work
°

Dynamics - time-evolution is very important
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Quantum dynamics

Typical experiment (Orsay, ANU)
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Quantum dynamics

How to calculate dynamics?

Classical solution: - use Hamilton's equations

. OH
pi = _aiq,'
. 9H
qi = op;

Quantum mechanics replaces classical quantities by corresponding
operators with commutators, so that

G L
[gi,q11 = [pi.p]=0
Then, for any operator O, in the Heisenberg picture:
0 1714 ~
sl



Quantum dynamics

What about mixtures of states?

Suppose the quantum system is in a mixture of quantum states
|wm) with probability pp, . Then the density matrix p is defined as:

p= ZPmW/m> (Wl

In the Schroedinger picture, we let states evolve in time, not

operators!
ap 11~
9 =7 7]

Then, for any operator 0, the expectation value of the observable

(0)-7[p0
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Quantum dynamics

What is the Hamiltonian anyway?

What about the quantum fields with hats?

-~

Here, V; is a quantum field of spin-index i:

U, (x), ﬁ:j(x')} | = 8;8°(x—x)
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Quantum dynamics

What is the Hamiltonian anyway?

What about the quantum fields with hats?

-~

Here, V; is a quantum field of spin-index i:

~

\U,'(x),lTI:f(x’)}i = 3U5D(x—x’)

In second quantization the quantum Hamiltonian is

/ dPx { VU (x) - VU (x) + \/,-(x)xT:,T(x)\Tf,-(x)}

+ Y 71 / dPx U] ()] () W (x) Ui (x)
iy
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Quantum dynamics

What are the parameters?

This describes a dilute gas at low enough temperatures,

° <\Tl:r(x)\TJ,(x)> is the spin i atomic density,
@ m is the atomic mass,
@ V; is the atomic trapping potential & Zeeman shift

@ Uj; is related to the S-wave scattering length in three
dimensions by:

47[523,:,'
Uj=——15
m

@ Here we implicitly assume a momentum cutoff k. << 1/a
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Exponential complexity

Simplest method for state evolution

Suppose the quantum system is described by a few modes:

[v)=Y wn|Ni, No,.. Ni) =) i [N)

Then, let Hum = (N|H|M) and: & |y) = — LA |y)
Hence, we have a simple matrix equation:

d

i
— :—72 H
dt‘l’N 5 g NM YMm

(4) Prove the last equation using orthogonality
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Exponential complexity

Problem: quantum theory is exponentially complex!

Quantum many-body problems are very large

@ consider N particles distributed among M modes
take N ~ M ~ 500, 000:
Number of quantum states: Ny = 22NV = 21,000,000
More quantum states than atoms in the universe
How big is your computer?

Can’t diagonalize 21:000.000 5 51,000,000 Hamjltonian!
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Exponential complexity

What about losses and damping?

Damping can be treated using a master equation

@ The density matrix p evolves as:

dp i A A A
P [H,P} +;Kj/d3riﬂj[p]

@ Here the Liouville terms describe coupling to the reservoirs:

P A~

Z[p]=20;p0! - 6/ 0;p —p 0] G,

Q)

o o~ n
@ For n-particle collisions: O; = [\U,-(r)}
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Exponential complexity

Traditional quantum theory methods?

@ numerical diagonalisation?
intractable for 2 10 modes
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Exponential complexity

Traditional quantum theory methods?

@ numerical diagonalisation?
intractable for 2 10 modes

@ operator factorization
not applicable for strong correlations
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Exponential complexity

Traditional quantum theory methods?

@ numerical diagonalisation?
intractable for 2 10 modes

@ operator factorization
not applicable for strong correlations

@ perturbation theory
diverges at strong couplings
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Exponential complexity

Traditional quantum theory methods?

@ numerical diagonalisation?
intractable for 2 10 modes

@ operator factorization
not applicable for strong correlations

@ perturbation theory
diverges at strong couplings

@ exact solutions
not applicable for quantum dynamics
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Wigner stochastic equations

Quantum theory in classical phase-space

Properties of Wigner/Moyal phase-space
@ Maps quantum states into classical phase-space @ = p+ ix
@ Wigner first published this representation
@ Moyal showed equivalence to quantum mechanics

o Complexity grows only linearly with number of modes!

Problem: Wigner distribution can have negative values

o Need to truncate equations to get positive probabilities
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Wigner stochastic equations

Detailed equivalence

Mapping of characteristic functions

2M IZ a— iz*
W(a 7172,\/[/d ( a)+ ( )>
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Wigner stochastic equations

Detailed equivalence

Mapping of characteristic functions

1 iz-(a— iz*-(a —a*
W(a)zw/d2MZ<e (a—a)+ ( a)>

v

Operator mean values

atm an _ 2M *m N _ *m N
° <a,. aj>5YM = [dVaoMaW (&) = <a,- aj>

w

o (ala+58])/2=(7ay)y
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Wigner stochastic equations

Dynamical equivalence

Mapping of dynamical equations

oW(e) 1 2M P iz(a-a)tiz(a-a*)
T _7C2M/d zTr Ee
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Wigner stochastic equations

Dynamical equivalence

Mapping of dynamical equations

.
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Wigner stochastic equations

Example: Wigner function for a coherent state

Suppose we have a single-mode BEC in a coherent state

p = |ao) (o]

Hence:

1 i7.(3 iz-(5"—o*
W (a) = ?/d22<a0| piz(d-a)+iz:(a"—a") o)

Solution with a little algebra

W(a) = %e‘2|“_°‘°|2

(5): show that this solution gives (o*a) = 1/2 for a vacuum state
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Wigner stochastic equations

Example: time-evolution of harmonic oscillator

Consider the harmonic oscillator
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Wigner stochastic equations

Example: time-evolution of harmonic oscillator

Consider the harmonic oscillator
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Wigner stochastic equations

Harmonic oscillator solution

General result for harmonic oscillator

(6): Prove this!

P. D. Drummond Coherence and Phase-space Il



Wigner stochastic equations

Fokker-Planck equations

Result of operator mappings:

aw_{ d 1 92 1 9®

ALATD SRR WSS A VS a— N
gt 9o " 20mda T 6agaaan T }

Scaling to eliminate higher-order terms

x=a/VN

ow 1 9 1 92 1
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Wigner stochastic equations

Stochastic equation

Result of operator mappings + truncation - valid if N/M >> 1:

ow d 1 92
EI {_MAi+2<905;<9()cj‘DU} W

Equivalent stochastic equation

aOC,' A )
W — A/+Cl(t)

where:

(Gi(1)& (1)) = Dyé (t—t')
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Wigner stochastic equations

Example: BEC case

Result of operator mappings + truncation - for the GPE:
dy; . .
—e = K= Uiy = v+ Vg (1)

Here the linear unitary evolution of the wave-function, is described
by:
K; = AV2/2m — V; (1)

while {i(x,t) is a complex, stochastic delta-correlated Gaussian
noise with

(G, 1)&; (X, t)) = §;8% (x—x) & (t—1') .

Initial fluctuations: (AW (x)AW} (X)) = 38,63 (x—x)




Wigner stochastic equations

Interferometry on an atom chip




Wigner stochastic equations

Interferometry

A two-component 8 Rb BEC is in a harmonic trap with internal
Zeeman states |1, —1) and |2, 1), which can be coupled via an RF

field.
g 30 i Wil 1.0 (b)
g 20 0.5
X ))) (( )) ((
;;,: 0 0.0 o
s T W "
g 30 e -1.0
x 0.0 0.1 0.2 0.3 0.4 0. .7

T (s)
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Wigner stochastic equations

Wigner simulations vs BEC fringe visibility

Blue line = Wigner simulation, black line = Wigner + local
oscillator noise, red dots = GPE, error bars are measured

T(s)
i
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Wigner stochastic equations

SUMMARY

Phase-space representation methods have many applications J
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Wigner stochastic equations

SUMMARY

Phase-space representation methods have many applications J

Wigner phase-space is relatively simple!

@ Maps quantum field evolution into a stochastic equation

e Can also be used to treat interferometry
@ Advantage: No exponential complexity issues!
@ Mathematical challenge:

e truncation error needs to be checked: SEE Lecture 3!
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