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One dimension is different!

* To be covered in these lectures:
— Introduction to solitons
— Absence of true Bose-Einstein condensation
— Strongly-correlated many-body physics with a dilute gas
— Attractive bosons and quantum bright solitons
— Bosons play fermions: Lieb-Liniger model
— Superfluid or not superfluid (or maybe both?)
— Where are solitons in the Lieb-Liniger model?



Interaction strength and dimensionality
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Expect 1D physics when |7 < 1
The 1D gas can be dilute even when ~ > 1 -> strong correlation



Condensates with Attractive Interactions

Collapse occurs in free space, may @
be stabilized by trapping potential

In 1D: no collapse, instead bright solitons. The

nonlinear Schrodinger equation /\
is integrable

First observation of matter-wave bright solitons
in 2002 at ENS (Paris) and Rice (Texas) in
elongated traps (cigars)

Soliton trains at Rice pose riddles



Quantum description of attractive bosons in 1D

Exact solutions by J. B. McGuire (1964) for 1D
bosons with attractive delta interaction

— There is exactly one bound state for N particles. This is
the ground state

— All other solutions of N particles are scattering states. The
scattering phase shifts can be determined.

Quantum solitons as superpositions of McGuire
bound states (Lai, Haus 1989)

— Density profile and energies of GPE solitons compares
very well with exact solutions

Phase space/field theory treatment of quantum
solitons by Drummond/Carter (1987)

— Predicts squeezing in the number/phase uncertainty



Ground state for N attractive bosons in 1D box
(Lai, Haus 1989)

Quantum mechanics GP mean field theory
(Mc Guire 1964)
 Bound state (cluster) o« ¢(x) = sech(x)
of N particles or cn(x|lm)
* Non-degenerate * Highly degenerate
(position of soliton)
* CoM delocalised * CoM localised
gquantum particle classical particle

g*(x — a') = (T (2)T (2")(2")3p(2)) = sech® (2 — )

Reality is actually a bit more complicated but in essence the g2 function is bell-shaped in
both theories. For a detailed comparison see Kartner and Haus PRA 48, 2361 (1993).
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einteractions are
switched to attractive,
end caps removed

-~ einitial “rectangular”
— density profile breaks up
into train of 4 to 7
_solitons

initial density profile

/

*90% of atoms are lost

esoliton dynamics shows
“ repulsive soliton-
soliton interactions




Bright soliton interactions (NLS)

Dynamics of classical particles with short range interaction that depends on the
relative phase (J. P. Gordon 1983)

repulsive attractive
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Collisional delay but no mass exchange during collision!



The relative phase of two solitons

e Gross-Pitaevskii (NLS):
— Always well defined, changes deterministically with time
* Phase-space, field theory approaches:
— Phase fluctuations occur stochastically due to quantum
and/or thermal fluctuations
 Two different number states solitons (this is a
fragmented condensate):

— There is no relative phase. Evolution is deterministic

e Variational two mode theory seems to predict repulsion of
solitons

* Bethe-ansatz, exact solutions predict ???



Repulsively interacting bosons in 1 dimension:
Bosons play fermions

The Lieb-Liniger model and
the Tonks-Girardeau gas



Tonks-gas — Experiments

letters to nature
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Tonks-Girardeau gas of ultracold
atoms in an optical lattice

Belén Paredes', Artur Widera' -, Valentin Murg', Olaf Mandel' ",
Simon Félling'*~, Ignacio Cirac', Gora V. Shiyapnikov’,
Theodor W. Hinsch'* & immanuel Bloch'

MPQ Garching

up to vy~ 200

other experiments:
T. Esslinger (Zurich)
W. Phillips (NIST)

D. Weiss (PSU), y~5.5

R. Grimm (Innsbruck): confinement
induced resonance!
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1D Bose Gas — Lieb-Liniger model
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1D Bosons with repulsive 0 interactions

Ground- and excited-state wavefunctions exactly known
from Bethe ansatz [Lieb, Liniger (1963)]
Interaction parameter N = %gl_D
he n
For 7 — OO, problem is mapped exactly to
(Tonks-Girardeau gas) [Girardeau (1960)]

Ring geometry provides periodic boundary conditions



Lieb-Liniger model: wave function

Consider 0<z;<z9---<zny <L

 |nside: 72 52

_ — W =E
2m 7; &E%w 4
* Boundary conditions are provided by X
— Interactions

— Periodicity in the box

* Bethe ansatz:
N
Y(T1, ..., TN) = Z a(P)P exp(i Z kixj)
P j=1
P is a permutation of the set {k} = ki, k2, ... kN
e Just one quasimomentum per particle (!)
* Model is integrable, check Yang-Baxter equation



Bose-Fermi mapping

“In 1D, there is no distinction between Bosons and Fermions”

Strong repulsive interactions for bosons have the same effect as the Pauli
exlusion principle for fermions.

The 1D Bose gas maps one-to-one to a gas of spinless fermions

Fermions Bosons

¢ = |p" |

Bosons with but
finite interactions map to
spinless fermions with

short-range interactions

Cheon and Shigehara, 1999
Girardeau, 1960




Pseudopotential in the Fermionic picture

Sen’s pseudopotential generates correct energy levels to
first orderin 1/y

2h2 ,
V(r1,20) = —0 (1 —xp) [D.Sen 1999]
me

generalization for arbitrary vy:

V(:U]_v o, x/27 ZC/]_) — —

AR2 [z + x5 — b —

— 5 ( 5 21§ (w1 —20)8 (2] —ab)
Granger and Blume [2004],

Girardeau and Olshanii [2004],

Brand and Cherny [2005]

This can be used to apply common methods of fermionic many-body theory, e.g.
* Hartree-Fock

e diagrammatic many-body perturbation theory
 Random-phase approximation



The nature of Bethe-ansatz solutions:
Quasi-momenta and Fermi sphere

1D Fermi sphere, noninteracting Fermi gas (~Tonks)

— I:¢¢¢é¢¢¢:l T

Kk

Bethe Ansatz solution, finite interaction

:m&mg .

2
Total energy: E= ;—m > K
k

Total momentum: p— th
k



Lieb-Liniger ground states

The quasi momentum
distribution in the ground
state is deformed from
the simple Fermi-sphere
picture at finite (weaker)
interactions

Lieb, Liniger, 1963
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F16. 2. The distribution function of “quasi-momenta’” in the
ground state for various values of y=¢/p. The vertical dashed
lines are the cutoff momenta K (cf. Fig. 1). Wheny= o, f= (27)".
For all v, S_xXf(k)dk=p.



Excitation spectrum for the Lieb-Liniger model
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Type Il excitations can be identified with dark solitons!



Low-lying excitation spectrum
(yrast states)
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Dark soliton dispersion relation
(for GPE solution)

Energy
E=W - Wj

1
W= [[[VW 4 p2 W2 + dmy W) — 20w av
Impulse (canonical momentum)

19,
Q= [(n—no)>av

The velocity has an upper bound in the speed
of sound v..
dE
v — < Vg w

Dispersion relation for
dark solitons

0

|
0 3
Q

The dark soliton dispersion (in the right units) asymptotically matches the
Lieb type Il dispersion relation for large densities. Ishikawa, Takayama JPSJ (1980)

27



Two-mode model

Restrict particles to zero or single unit of momentum.
This is valid for N particles in the limit of small interactions.

Dark solitons Yrast states
 Bose-Einstein condensed e Fragmented condensate
i N NP )P
(aaO + Bal) [vac) (aO) (al) [vac)

How could these two be related?

Which one is correct?



Two-mode model

Restrict particles to zero or single unit of momentum.
This is valid for N particles in the limit of small interactions.

Dark solitons Yrast states
 Bose-Einstein condensed e Fragmented condensate
i N NP )P
(aaO + Bal) [vac) (aO) (al) [vac)

2 () ()7 (@) 9 Ee (o) (o)

Becomes a multiple superposition due to
the symmetry breaking potential



Energy level diagram

~ Caustic area
(many lines intersect)

Quantum states
(two mode approximation)




E/E, N)

E/E,N)

Energy level diagram

Dark soliton
1.3 a
Mean field (GP) stationary states;
Plane waves (ring currents) and
dark soliton
0.8}
0.3
1.3 -
C
Quantum states
(two mode approximation)
0.8}
Kanamoto et al. identified a metastable
QPT through yrast states.
Can it be achieved?
0.3

Kanamoto, Carr, Ueda, PRL (2008), PRA (2009, 2010)



Add symmetry breaking potential
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The level splitting creates an adiabatic passage

Fialko, Delattre, Brand, Kolovsky, PRL (2012)



Simulation of adiabatic passage (GP)
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Time dependent simulation of the adiabatic
passage
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Symmetry is finally broken.
Can it be restored?

> Z Cp (ag)N_p (a{)p [vac)

* Removing the symmetry breaking potential
adiabatically should restore symmetry...

(ag)N_p (aJ{)p [vac)

... however, the time scale diverges with N.
For large particle number, the symmetry remains
broken?

“More is different”



Wrap up
1D physics is different from 3D and very rich

1D quantum gases are experimentally accessible

Exactly solvable models give valuable insights
(and exact results)

Even though it is not a priori clear that mean field
theory can be trusted, it can give useful
predictions and insights (if treated with a grain of
salt)
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