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One dimension is different!

* To be covered in these lectures:
— Introduction to solitons
— Absence of true Bose-Einstein condensation
— Strongly-correlated many-body physics with a dilute gas
— Attractive bosons and quantum bright solitons
— Bosons play fermions: Lieb-Liniger model
— Superfluid or not superfluid (or maybe both?)
— Where are solitons in the Lieb-Liniger model?



One dimension is different: There is no BEC.
Does that mean that Gross-Pitaevskii theory is
meaningless?

No BEC here?

What is BEC?



What is Bose-Einstein condensation?

* Defined through scaling property of single-particle
density matrix (spdm) :

glz,z') = W (z)Y(x)) = N/d:cg o de N (2,22, NV (2, 22, .. )

* For an infinite system we expect off-diagonal long
range order (ODLRO):

lim  g(z,z') =n. >0
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* For a finite system we can look at natural orbitals:
glz,a') =Y nedi(x)pr(a’) /gb;(x)@(x) _5y, > mk=N
k k

* |In the thermodynamic limit we want
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Thermodynamic limit

For the thermodynamic limit we assume a box with
linear size L (and periodic boundaries or ring)

N — 00, L — o0
N

3D: n3 = 73 = const. BEC phase transition (finite T and
interaction)
2D: ny = % = const. Berezinski-Kosterlitz-Thouless PT

1D: ny = % = const. NO PT (Yang-Yang)

Absence of BEC phase transition for d<3 follows from
Mermin-Wagner theorem (c.f. Hohenberg, Coleman)



1D Bose gas

e Homogeneous gas (e.g. large-radius ring trap):
— No phase transition and no ODLRO
— Fluctuations of phase are large (diverge for infinite system)
— Finite T: exponential decay of spdm
— Zero T: algebraic decay of spdm

 Harmonically trapped 1D Bose gas:

— BEC is possible (Ketterle, van Druten)

— Length scale for phase fluctuations should be compared to
Thomas-Fermi radius of gas



1D Bose gas in harmonic trap

* Degeneracy temperature T, ~ ——

* Phase fluctuations dominate in the quasicondensate
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Phase fluctuating condensate?

. Bogollubov s trick:

(x) = ¢(x) + 5 (x)

This obviously works if BEC is present (3D).

However, it is sufficient to have small density
fluctuations (works in 1D without BEC):

p(x) = T () (x) ~ po + 5p(x)

The (fluctuating) phase is then “defined” by

7 /A0

)(x) =/ pe
Y. Castin, Simple theoretical tools for low dimension Bose gases, J.
Phys. IV France, 116, 89 (2004) arXiv:0407118

V. N. Popov, Functional Integrals in Quantum Field Theory and
Statistical Physics, (Reidel, Dordrecht, 1983).



Strongly correlated and yet dilute?

The dimensional crossover



From 3D to 1D

. . 1
* Consider cylindrical trap =~ Viyap = 5mwi(a:2 +y?)
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* 3D coupling strength: Anh2a,
gs =

m

: 2ha
1D coupling strength: ¢ = —3> = &

7nli - QﬂJi

2h%a, 1
[more accurately 91 = 7,2 (1-Cas/ly1)

(Olshanii 1998), leads to confinement-induced
resonance!]

* Healing length: ho _ h




Dimensionless interaction strength

- J h
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e Lieb-Liniger parameter: __ mg 1
s 2
h ni (nllc)

compares mean distance between particles and
healing length

 Komineas-Papanicolao parameter:

B . 1 RJ_ 2 - vt
. o T e\ ) T el
compares healing length with
transverse Thomas-Fermi radius (Komineas 2002)




Interaction strength and dimensionality
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Expect 1D physics when |7 < 1
The 1D gas can be dilute even when ~ > 1 -> strong correlation



Condensates with Attractive Interactions

Collapse occurs in free space, may @
be stabilized by trapping potential

In 1D: no collapse, instead bright solitons. The

nonlinear Schrodinger equation /\
is integrable

First observation of matter-wave bright solitons
in 2002 at ENS (Paris) and Rice (Texas) in
elongated traps (cigars)

Soliton trains at Rice pose riddles



Quantum description of attractive bosons in 1D

Exact solutions by J. B. McGuire (1964) for 1D
bosons with attractive delta interaction

— There is exactly one bound state for N particles. This is
the ground state

— All other solutions of N particles are scattering states. The
scattering phase shifts can be determined.

Quantum solitons as superpositions of McGuire
bound states (Lai, Haus 1989)

— Density profile and energies of GPE solitons compares
very well with exact solutions

Phase space/field theory treatment of quantum
solitons by Drummond/Carter (1987)

— Predicts squeezing in the number/phase uncertainty
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einteractions are
switched to attractive,
end caps removed

-~ einitial “rectangular”
— density profile breaks up
into train of 4 to 7
_solitons

initial density profile

/

*90% of atoms are lost

esoliton dynamics shows
“ repulsive soliton-
soliton interactions




Bright soliton interactions (NLS)

Dynamics of classical particles with short range interaction that depends on the
relative phase (J. P. Gordon 1983)
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Collisional delay but no mass exchange during collision!



The relative phase of two solitons

e Gross-Pitaevskii (NLS):
— Always well defined, changes deterministically with time
* Phase-space, field theory approaches:
— Phase fluctuations occur stochastically due to quantum
and/or thermal fluctuations
 Two different number states solitons (this is a
fragmented condensate):

— There is no relative phase. Evolution is deterministic

e Variational two mode theory seems to predict repulsion of
solitons

* Bethe-ansatz, exact solutions predict ???
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