Physics of ultracold Bose gases in onedimension and solitons

Joachim Brand Massey University, New Zealand

One dimension is different!

- To be covered in these lectures:
 - Introduction to solitons
 - Absence of true Bose-Einstein condensation
 - Strongly-correlated many-body physics with a dilute gas
 - Attractive bosons and quantum bright solitons
 - Bosons play fermions: Lieb-Liniger model
 - Superfluid or not superfluid (or maybe both?)
 - Where are solitons in the Lieb-Liniger model?

One dimension is different: There is no BEC. Does that mean that Gross-Pitaevskii theory is meaningless?

No BEC here?

What is BEC?

What is Bose-Einstein condensation?

 Defined through scaling property of single-particle density matrix (spdm):

$$g(x,x') = \langle \psi^{\dagger}(x)\psi(x')\rangle = N \int dx_2 \dots dx_N \Psi^*(x,x_2,\dots,x_N)\Psi(x',x_2,\dots,x_N)$$

 For an infinite system we expect off-diagonal long range order (ODLRO):

$$\lim_{|x-x'|\to\infty} g(x,x') = n_c > 0$$

• For a finite system we can look at natural orbitals:

$$g(x,x') = \sum_{k} n_k \phi_k^*(x) \phi_k(x') \qquad \int \phi_k^*(x) \phi_l(x) = \delta_{kl} \qquad \sum_{k} n_k = N$$

• In the thermodynamic limit we want

$$\lim_{N \to \infty} \frac{n_0}{N} = f_c > 0 \qquad \text{This is BEC!} \qquad \qquad n_c = f_c \frac{N}{V}$$

Thermodynamic limit

 For the thermodynamic limit we assume a box with linear size L (and periodic boundaries or ring)

$$N \to \infty, L \to \infty$$

- 3D: $n_3 = \frac{N}{L^3} = \mathrm{const.}$ BEC phase transition (finite T and interaction)
- 2D: $n_2 = \frac{N}{L^2} = \text{const.}$ Berezinski-Kosterlitz-Thouless PT
- 1D: $n_1 = \frac{N}{L} = \text{const.}$ no PT (Yang-Yang)
- Absence of BEC phase transition for d<3 follows from Mermin-Wagner theorem (c.f. Hohenberg, Coleman)

1D Bose gas

- Homogeneous gas (e.g. large-radius ring trap):
 - No phase transition and no ODLRO
 - Fluctuations of phase are large (diverge for infinite system)
 - Finite T: exponential decay of spdm
 - Zero T: algebraic decay of spdm
- Harmonically trapped 1D Bose gas:
 - BEC is possible (Ketterle, van Druten)
 - Length scale for phase fluctuations should be compared to Thomas-Fermi radius of gas

1D Bose gas in harmonic trap

• Degeneracy temperature $T_d pprox rac{N\hbar\omega}{k_B}$

 Phase fluctuations dominate in the quasicondensate regime but freeze out at

$$T_{ph} = \frac{T_d \hbar \omega}{\mu}$$

Crossover to BEC at

$$T_c \approx \frac{N\hbar\omega}{k_B \ln 2N}$$

Phase fluctuating condensate?

Bogoliubov's trick:

$$\hat{\psi}(x) = \phi(x) + \delta\hat{\psi}(x)$$

This obviously works if BEC is present (3D).

However, it is sufficient to have small density fluctuations (works in 1D without BEC):

$$\hat{\rho}(x) = \hat{\psi}^{\dagger}(x)\hat{\psi}(x) \approx \rho_0 + \delta\hat{\rho}(x)$$

The (fluctuating) phase is then "defined" by

$$\hat{\psi}(x) = \sqrt{\hat{\rho}}e^{\hat{\theta}}$$

Y. Castin, Simple theoretical tools for low dimension Bose gases, J. Phys. IV France, 116, 89 (2004) arXiv:0407118
V. N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics, (Reidel, Dordrecht, 1983).

Strongly correlated and yet dilute?

The dimensional crossover

From 3D to 1D

• Consider cylindrical trap $V_{\rm trap} = \frac{1}{2} m \omega_{\perp}^2 (x^2 + y^2)$

$$V_{\rm trap} = \frac{1}{2}m\omega_{\perp}^2(x^2 + y^2)$$

- 3D coupling strength: $g_3 = \frac{4\pi\hbar^2 a_s}{}$
- 1D coupling strength: $g_1 = \frac{2\hbar^2 a_s}{ml^2} = \frac{g_3}{2\pi l^2}$

[more accurately $g_1=rac{2\hbar^2 a_s}{ml_\perp^2}(1-Ca_s/l_\perp)^{-1}$ (Olshanii 1998), leads to confinement-induced resonance!]

 Healing length: $l_c = \frac{\hbar}{\sqrt{mn_3 q_3}} \approx \frac{n}{\sqrt{mn_1 q_1}}$

Dimensionless interaction strength

• Lieb-Liniger parameter: $\gamma = \frac{mg_1}{\hbar^2 n_1} = \frac{1}{(n_1 l_2)^2}$

compares mean distance between particles and healing length

Komineas-Papanicolao parameter:

$$\eta = n_1 a_s = \frac{1}{2} \left(\frac{R_\perp}{l_c} \right)^2 \approx \frac{\mu}{\hbar \omega_\perp}$$

compares healing length with transverse Thomas-Fermi radius (Komineas 2002)

Interaction strength and dimensionality

Expect 1D physics when $|\eta|\ll 1$ The 1D gas can be dilute even when $\gamma\gg 1$ -> strong correlation

Condensates with Attractive Interactions

 Collapse occurs in free space, may be stabilized by trapping potential

- In 1D: no collapse, instead **bright solitons**. The nonlinear Schrödinger equation is *integrable*
- First observation of matter-wave bright solitons in 2002 at ENS (Paris) and Rice (Texas) in elongated traps (cigars)
- Soliton trains at Rice pose riddles

Quantum description of attractive bosons in 1D

- Exact solutions by J. B. McGuire (1964) for 1D bosons with attractive delta interaction
 - There is exactly one bound state for N particles. This is the ground state
 - All other solutions of N particles are scattering states. The scattering phase shifts can be determined.
- Quantum solitons as superpositions of McGuire bound states (Lai, Haus 1989)
 - Density profile and energies of GPE solitons compares very well with exact solutions
- Phase space/field theory treatment of quantum solitons by Drummond/Carter (1987)
 - Predicts squeezing in the number/phase uncertainty

letters to nature

Nature 417, 150 - 153 (2002); doi:10.1038/nature747 Nature AOP, published online 1 May 2002

Formation and propagation of matter-wave soliton trains

KEVIN E. STRECKER*, GUTHRIE B. PARTRIDGE*, ANDREW G. TRUSCOTT*+ & RANDALL G. HULET*

- * Department of Physics and Astronomy and Rice Quantum Institute, Rice University, Houston, Texas 77251, USA
- + Present address: Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia

Correspondence and requests for materials should be addressed to R.G.H. (e-mail: randy@atomcool.rice.edu).

- •interactions are switched to attractive, end caps removed
- •initial "rectangular" density profile breaks up into train of 4 to 7 solitons
- •90% of atoms are lost
- •soliton dynamics shows
 repulsive solitonsoliton interactions

Bright soliton interactions (NLS)

Dynamics of classical particles with short range interaction that depends on the relative phase (J. P. Gordon 1983)

Collisional delay but no mass exchange during collision!

The relative phase of two solitons

- Gross-Pitaevskii (NLS):
 - Always well defined, changes deterministically with time
- Phase-space, field theory approaches:
 - Phase fluctuations occur stochastically due to quantum and/or thermal fluctuations
- Two different number states solitons (this is a fragmented condensate):
 - There is no relative phase. Evolution is deterministic
 - Variational two mode theory seems to predict repulsion of solitons
 - Bethe-ansatz, exact solutions predict ???

Bibliography

- W. P. Reinhardt, **Solitons in the Bose Condensate**, in *Tunneling in Complex Systems*, (World Scientific, Singapore 1988)
- M. Olshanii, Atomic Scattering in the Presence of an External
 Confinement and a Gas of Impenetrable Bosons, Phys. Rev. Lett. 81, 938
 (1998)
- S. Komineas and N. Papanicolaou, **Nonlinear waves in a cylindrical Bose-Einstein condensate**, Phys. Rev. A **67**, 023615 (2003)
- J. B. McGuire, Study of exactly solvable N-body problems, J. Math. Phys.
 5, 622 (1964)
- Y. Lai, H. Haus, Quantum theory of solitons in optical fibres, Phys. Rev. A
 40, 844 (1989), ibid. 40, 854 (1989)
- P.D. Drummond, S. J. Carter, Quantum field theory of squeezing in solitons, J. Opt. Soc. Am. B 4, 1565 (1987)
- E. H. Lieb, W. Liniger, Exact analysis of an interacting Bose gas, Phys. Rev. 130, 1605 (1963); ibid. 130, 1616 (1963)