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Spin-orbit coupling plays a key role in different branches of physics.
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Number of atoms: 104-10¢
Length scale: 100 um
Temperature scale: 100 nK
Interaction: s-wave dominant

Confined: harmonic traps

Ultracold atoms 1s an ideal table-top system for exploring new states of matter.
Toolkit: Feshbach resonance + Optical lattice + Cavity + Disorder + SOC
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LETTER

doi:10.1038/nature09887

Spin-orbit-coupled Bose-Einstein condensates

Y.-J. Lin', K. Jiménez-Garcia™? & I. B. Spielman’

Spin-orbit (SO) coupling—the interaction between a quantum
particle’s spin and its momentum—is ubiquitous in physical sys-
tems. In condensed matter systems, SO coupling is crucial for the
spin-Hall effect'? and topological insulators®; it contributes to
the electronic properties of materials such as GaAs, and is import-
ant for spintronic devices®. Quantum many-body systems of ultra-
cold atoms can be precisely controlled experimentally, and would
therefore seem to provide an ideal platform on which to study SO
coupling. Although an atom’s intrinsic SO coupling affects its
electronic structure, it does not lead to coupling between the spin
and the centre-of-mass motion of the atom. Here, we engineer SO
coupling (with equal Rashba” and Dresselhaus® strengths) in a
neutral atomic Bose-Einstein condensate by dressing two atomic
spin states with a pair of lasers”. Such coupling has not been rea-
lized previously for ultracold atomic gases, or indeed any bosonic
system. Furthermore, in the presence of the laser coupling, the
interactions between the two dressed atomic spin states are modi-
fied, driving a quantum phase transition from a spatially spin-
mixed state (lasers off) to a phase-separated state (above a critical
laser intensity). We develop a many-body theory that provides
quantitative agreement with the observed location of the trans-
ition. The engineered SO coupling—equally applicable for bosons
and fermions—sets the stage for the realization of topological insu-
lators in fermionic neutral atom systems.

o parametrizes the SO-coupling strength; 2 = —gugB.and d = —gugB,
result from the Zeeman fields along z and j, respectively; and &, , . are
the 2> 2 Pauli matrices. Without SO coupling, electrons have group
velocity v, = fik./m, independent of their spin. With SO coupling, their
velocity becomes spin-dependent, v, = fi(k, = 2eem/h)/m for spin |1}
and ||} electrons (quantized along ). In two recent experiments, this
form of SO coupling was engineered in GaAs heterostructures where
confinement into two-dimensional planes linearized the native cubic SO
coupling of GaAs toproduce a Dresselhaus term, and asymmetriesin the
confining potential gave rise to Rashba coupling. In one experiment a
persistent spin helix was found®, and in another the SO coupling was
only revealed by adding a Zeeman field*".

SO coupling for neutral atoms enables a range of exciting experi-
ments, and importantly, it is essential in the realization of neutral atom
topological insulators. Topological insulators are novel fermionic band
insulators including integer quantum Hall states and now spin
quantum Hall states that insulate in the bulk, but conduct in topo-
logically protected quantized edge channels. The first-known topo-
logical insulators—integer quantum Hall states''—require large
magnetic fields that explicitly break time-reversal symmetry. In a
seminal paper’, Kane and Mele showed that in some cases SO coupling
leads to zero-magnetic-field topological insulators that preserve time-
reversal symmetry. In the absence of the bulk conductance that plagues
current materials, cold atoms can potentially realize such an insulator

Y.-J. Lin et al., Nature 471, 83 (2011) (3 March 2011)
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Physics Physics 5, 96 (2012)

Viewpoint
Spin-Orbit Coupling Comes in From the Cold

Erich J. Mueller
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853,

USA
Published August 27, 2012

Experimentalists simulate the effects of spin-orbit coupling in ultraceld Fermi gases, paving the way
for the creation of new exotic phases of matter.

Subject Areas: Atomic and Molecular Physics

A Viewpoint on:

Spin-Orbit Coupled Degenerate Fermi Gases

Pengjun Wang, Zeng-Qiang Yu, Zhengkun Fu, Jiao Miao, Lianghui Huang, Shijie Chai, Hui Zhai, and Jing Zhang
Phys. Rev. Lett. 109, 095301 (2012) — Published August 27, 2012 -

Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi Gas
Lawrence W. Cheuk, Ariel T. Sommer, Zoran Hadzibabic, Tarik Yefsah, Waseem S. Bakr, and Martin W. Zwierlein

Phys. Rev. Lett. 109, 095302 (2012) — Published August 27, 2012

January 23-24 lan Spielman group: PRL (2013). VSSUP2014
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* Experimental realization of SOC and two-body study (I & II)

(No Zeeman field)
* Anisotropic superfluidity
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* Fulde-Ferrell superfluidity

Flude-Feﬁ,cll superflu
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CHAPTER 2

FERMI GASES WITH SYNTHETIC SPIN-ORBIT
COUPLING

Jing Zhang

State Key Laboratory of Quantum Optics and Quantum Optics Devices,
Institute of Opto-Electronics, Shanxi University,

Taivuan 030006, P. R. China

Hui Hu and Xia-Ji Liu
Centre for Atom Optics and Ultrafast Spectroscopy,
Swinburne University of Technology, Melbourne 3122, Australia

Han Pu
Department of Physics and Astronomy, and Rice Quantum Institute,
Rice University, Houston, TX 77251, USA

Annual Review of Cold Atoms and Molecules, Vol. 2, 2014
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Lecture I: few-body physics
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Here, unlike electrons, we don’t care about the real spin of atoms.
When we say “spin”, we refer to the hyperfine states that atoms stay.
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+ kR (® B-field kR
- S —

Fermi gas

W

mf:—9/2 mf=—7/2
lan Spielman group: PRL (2013).
kr = 2w/ is determined

by the wave length A of two lasers and 2hkg is the mo-
mentum transfer during the two-photon Raman process
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Realization of SOC in neutral ultracold atoms QUANTUM-ATOM OPTICS
+ kR (® B-field kR
ﬁ —
Fermi gas
- 4Pz
4Py
hoko
_ T
_X__m Ho = Z/drt/ Ve ().
-2
i, O
" - _I Hp = L& dr[w() 2RRT (r) 4+ Hec.
) )
mp=-9/2  ms;=—7/2 (SOC at 6=0)

lan Spielman group: PRL (2013).

kr = 2w/ is determined
by the wave length A of two lasers and 2hkg is the mo-
mentum transfer during the two-photon Raman process

January 23-24 VSSUPr2014



,..{“, AUSTRALIAN RESEARCH COUNCIL
. . . Z#~=> CENTRE OF EXCELLENCE FOR
Realization of SOC in neutral ultracold atoms |~ QuaNTUM-ATOM OPTICS

+ kR (® B-field kR
- S —

Fermi gas

Raman laser2
Imaging Beam

Bias field coils
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I |

Optical dipole
trap laser

Toffe coil 19/2,7/2> *

y ~rx

Quadrupole
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Raman laserl

P. Wang ez al,, PRL. 109, 095301 (2012). Shanxi University, China
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h2 k>
Ho = 3 [l (0) G ().

Qg

2

Hr =

(gauge transformation):

dr [w,’; (r) ¢i2FrTe (v) + H.c.}
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O(r) = [ (r), vy ()]

H = /driﬁ (r) [Hso-] ®(r),

h? (k% + k%)
2M

HS()E

+ ho, + Ak,o- H, + Hy

Here, for convenience we have introduced a spin-orbit
coupling constant A\ = h°kg /M. an “effective” Zeeman
field h = Qr/2, and an “effective” lattice depth Vi =

QRF/Q.

January 23-24 VSSUP2014
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h? (k7 +k2)

HSO — N + }ZO';I; + )\k‘IO'Z
- 1
U (r) = 7 Wy (r) — W (1)],
. 2
(gauge transformation): ) 1
01 (r) = = [0 (1) + 0% (1)
Equal Rashba and Dresselhaus SOC !!!
Q. nik
Vi, =ho, + kkxcfy = o, + kxay
2 M

Recall that 1in solid state:
Vso = A R (+ Kk yOx — kXO' y ) Rashba spin-orbit coupling
VSO = A 5 (— K yOx — kXO' y ) Dresselhaus spin-orbit coupling

January 23-24 VSSUPr2014
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Importantly: Hire = Ug / drupl (r) L;EI (r) (r) o (r)

January 23-24

The form of the interaction Hamiltonian is
not changed by two gauge transformation;

The terms without spin-flip remains the
same;

The momenta of the basis for spin-up and
spin—-down atoms are shifted by * k.

Q r = 0 means no spin-orbit coupling!

VSSuUPr2014
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r— 4 P32
T ------- 4P/
0 X h2k,
=== Agp =
—_— 2m
[
@
1) )
mf——9/2 mf=—7/2
out-of-plane
Zeeman field
o h2k? Aok, o) Q
= + a, +-0,+-0,
2m S0 27 2
in-plane
Zeeman field

One-dimensional spin-orbit coupling so far! But already rich physics.
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h? (k3 + k%) SOC at §=0,
Hso = i + hoy + kg0 forget the trapping potential ...

The model Hamiltonian Hgo describes a spin-orbit
coupling with equal Rashba and Dresselhaus strengths
, ] The single-particle solution ¢k (r) satisfies the
Schrodinger equation, Hgodk(r) =exok(r). Using the
Pauli matrices and the fact that the wave-vector or mo-
mentum k = (k;, k1) = (k. ky. k) is a good quantum
number, it is easy to see that we have two eigenvalues

ﬁ.gki " h? (."{TQR + kg)
2M 2M

where “4" stands for two helicity branches. The cor-
responding eigenstates are given by (we set the volume

€kt — +/h2 + A\2k2,

V=1),
- ("_] J— - COs 91( i-krl‘ 'ikJ_ I
o () = ( sin Oy ) ¢ ] ¢ ’
(=) _ ([ - sin By ikyr | ik r
P (r) = ( cos B ) ¢ ] ¢ ’

where 0y = arctan[(y/h% + A2k2 — Aky)/h] and v =(y, 2).

January 23-24 VSSUPr2014
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ot 2 + (Aky)? ot Jh2 + (Aky + 6/2)2

T T T T 7 T T T T T W T T T T T
[
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momentum-resolved radio-frequency (rf) spectroscopy

Time-of-flight absorption imaging

Step 1I.

Probing |3) atoms

) (5 ©

Ideally, measure the single-particle spectral function A(k,)
January 23-24 VSSUP2014
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pd e
= &
S &
% O

10.07

= 2 | 0 1 2
Quasimomentum p_[units of £ |

Radio frequency v . /21t [units of MHz]

Observation at Shanxi University!

January 23-24 VSSUPr2014
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3)

i
0900 |RF
|

)

I

[
1|
1|
11
|
|
I

e
! W
The Fermi golden rule for rf-transfer strength: “\_L—L/

D(w) =Y UPs|Vig |®)|° f(Ei — 1) 6 [hw — hisy — (B — E;)]
i f

Here, the summation is over all the possible initial states i (with energy E.) and
final states f (with energy E;) and f (£, — p) is the Fermi distribution function.
The Dirac delta function ensures energy conservation during transition.

January 23-24 VSSUPr2014
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Single-particle state (rf-spectroscopy)

['(ky, ®)

> ] 2 -1 0 1 2
Quasimomentum p_[units of X |
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Key factors to understand the spectrum:

* The momentum of the basis for spin-down
atoms is shifted by - kg;

- Energy conservation &|w — (Ef — E;));

 The transfer strength is proportional to the
amplitude of spin-down component;

 Don’t worry about the trap; local density
approximation works pretty good for N~10°.

January 23-24 VSSUPr2014
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Observed at Shanxi University!

I'(kx, w)

Theoretical simulation on momentum-resolved rf spectroscopy of a Fermi gas

with 1D equal-weight Rashba—Dresselhaus SOC. Left panel: simulated experimental spec-

troscopy I (ky, @). Right panel: the spectroscopy I'(kyx = kyx +kr, 00 = @ -|—k_,%f2m). Here,

the intensity of the contour plot shows the number of transferred atoms, increasing linearly

from O (blue) to its maximum value (red). We have set w3 | = 0 and used a Lorentzian
Janua distribution to replace the Delta function. 14
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)

Qrr
)

0
Hpp = % dr | ] (r) 1y (r) + Hee.

(It 1s responsible for a SOC lattice!)

L. W. Cheuk ¢# a/., PRI. 109, 095302 (2012). MIT
January 23-24 VSSUPr2014
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h2 k>
Hy = Z/dra/) (r) Wi Ve (1)
Hr = —fdr ’l/)T (r) ezszI’l’/)‘L (r) —I—H.C.}
Q)
Hpp = == [ dr [0f (0) 9 (r) + He

P (1) = eI (),
Py (1) = e=hReg (x),

W2 (k+ kpey)? -
Ho = Z/dr {z/)i (r) ( ;EA/{Re ) Ve (r)}

Hp = —& /dr ()+Hc}

(gauge transformation):

Hpw = —= [ dr [wi(r)e—%%wm(rwﬂ.c.}

January 23-24 VSSUPr2014
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D(r) = [0 (r). 0y (1))

H= [ ded' (r)[Hso + Vi (2)] ® (),

he (k% + k%)
2M
Ve (x) = Vi [cos (2krx) 0, + sin (2krT) 0y .

Hso =

+ ho, + \k,0.

Here, for convenience we have introduced a spin-orbit
coupling constant A = h°kr/M, an “effective” Zeeman
field h = Qr/2, and an “effective” lattice depth Vp =
QRF/Q.

X.-]. Liu, PRA 86, 033613 (2012).
January 23-24 VSSUP2014
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—~—t
= —

VL. (il?)

= VL [cos (2kgx) 04 + sin (2kgx) 0y |

In the presence of the additional rf Hamiltonian Hgp,
the momentum along the x-axis, k., is no longer a good

quantum number. The lattice potential terms cos (2kpx)

and sin (2kgzr) will couple the eigenstates r_fbgj (r) and

r)l{{,,}( ) if & — kI = 2nkp, where n = £1,4£2,--- is
an integer. In this case, it is useful to define a quasi-
momentum or lattice momentum ¢, for arbitrary k, as
follows: k; = 2nkp + q., where the integer n is chosen to
make —kp < g, < kr. The quasi-momentum ¢, is then
a good quantum number. We may expand the single-
particle eigenstate of the total Hamiltonian in the form,

+co

r) = Z {am+ok+} (r) + a—-m—‘?ﬁ’ll[c;} (r)

m=—0oQ

P (Q;r ) kJ_;

where k,, =k + (2'?'”’%:9 + q;r)eﬂf = k| + kmzey has the
same quasi-momentum ¢,, and the energies of c_bg::ﬂj (r)

and @’51(:) (r) are given by

h2k2
2M

B2 (k2 + k2

mr) 271.2
577 +/h? + N2k

mx*

Em+ =

January 23-24

-1
-1.0

\/
\/
A

/7 N\

folding into bands

(a) Q=2E, Q=0 (b) Q. =2E,, O ~E,

'_/\_

1 I I _1 I 1 1
0.5 0.0 0.5 1.0 -1.0 -05 00 0.5 1.0

q./ky q9./ky
z
E(q,)
VSSUP2014
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Momentum-resolved rf-transfer strength:

E0(q,) - p
LBT

K212

F LCJ.-‘ =
(K, ) 20M

MkgT < _ 12
1 2};2 {a Eﬂr sinfy + a Ef)_ cos Hkﬂ} In {1 + exp [— ] } 5 [m + EW (q.) —
42k

l

=0

without lattice

2 0 2
k/k,

Observed at MIT using spin-injection spectroscopy
January 23-24 VSSUP2014
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Momentum-resolved rf transfer strength:
ﬁk:ﬁ
20N

I’ (kﬂ.;r:p LL) =1 (’le + hkpr,w+ ) oC 6[m+_E(”({EI)]

-3 -2 -1 kO/
without lattice

1 2 3

k Ik,

nx

January 23-24 X.-J. Liu, PRA 86, 033613 (2012).  ARPES analogue (in solid state) VSSUP2014
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Oleg Sushkov’s lecture II:

2D triangle lattice + spin-orbit coupling = topological insulator

some kinds of lattices + Raman coupling = atomic top?ogical insulator
o

Anyway, I will show you atomic topological superfluid in the next lecture.

January 23-24 VSSUPr2014
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Rashba SOC: VSO = kR (—|— kyo-x — kxo-y) to be realized yet...

k2 19 /1.9 o) >
Lo =5+ \/,1 (k2 +k2) + h?.

2D behaviour at low energy?!

P,

}\'eff: \

3r y
2r A =1 I
eff
s < l
hcff_
0 1 1 1
-4 2 0 2 4
co/EF

Left panel: schematic of the single-particle spectrum in the ky —ky plane. A energy
gap opens at kK = 0. due to a non-zero out-of-plane Zeeman field /. Right panel: density of

states of a 3D homogeneous Rashba spin—orbit coupled system at several SOC strengths, in
units of mk .

January 23-24 VSSUPr2014
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Two interacting atoms with spin-orbit coupling

January 23-24 VSSUPr2014
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Let us consider the inter-atomic interactions:

i

Hint = Uo f drv] (r) ] (1) ¥ (r) 1 (r) or Hine = Uo / dri] (r) ] (x) ) (x) &y (r)

BCS pairing crosses over to Bose-Einstein condensation of moleculés with increasing U,:

Interactions determined by the
s-wave scattering length a:

I

:

4rh’a \!

8= I
m |

3D BEC-BCS crossover without SOC: singlet pairing

January 23-24 VSSUPr2014
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B2 (K2, + K2)
2M

Solving: (Ho + Hind) |P2p) = Eo |P2p)

In the presence of spin-orbit coupling, the wave-function of initial two-particle bound state has both spin singlet
and triplet components. The wave-function at zero center-mass momentum, |®Psp). may be written as,

+ ho, + Ne,o.  0=0

. 1 ) p + . ) N ) R ry .
Dop) = W Z [t;[-.__ (k)eprely v (ke ely + vy (k)ey ety + v (k) C{cj.CT—k.L}
ok

where cl'{[ and (1'{ are creation ﬁeld ol)elatom of spin-up and spin-down atoms with momentum k and C =

S s (k)| + |y —|— W + | k‘r 15 the normalization tactor for the two-particle wave-tunction. With
vy ' d I 1l i} - . ) 1 . ) .

a contact 111te1'act10n with bale mtelactlon ‘:tlE‘l’LU‘th Up, the Schrodinger equation tor the two-particle wavefunction
takes the form.

ﬁk?R RE2 o Up ~— o, | o
Eo - + 2\ | v k) =+—= Z [ (K') = (K] + iy (k) + hoy ) (k)

I i
[ Rk ﬁ:z Us | | | | |
Eo — (k) = — — U (K] + ko (k) + R (k).
=0 ( ” Hl E [0 (K) = (K] + bty (k) + Ry (k)

v (k) =hty (k) + ko (k)

i R k% r Jc2 . : -

Eo — ( 1 ) I"H' (k} = ht’l'._. (k\) + ht_;‘_ll (k\J .
- 2,9 2

E, — (h kg H 15 )

January 23-24 Hu ez al., PRA 86, 053627 (2012). VSSUP2014
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Defining:
Ay = Eo— (R k%L /m+h7k? /m)

: 1 , |
vs (k) = 7 W (k) =2 (k)]
1 | |
Vo (k) = 7 Wi (k) + 2 (k)]
. , 1 h? A2E2 Ay
Wavefunctions: ¢, (k) = N e le + Ai 1R+ J\?kg}]
, 1 1 ,
o k) = ANk, bek
Ya (K) {Ak—thrAk—Qh]L (k)
~
, 2h x
Uiy (k) = ——1, (k)
Ak
—
, v 2h \
k) = o (k :
tll( \] f-ilk U ( ) mz _ - +Z 2m 1s used for UO
4mh’a U, T’k
m m
Equation for energy: ———5— — s (k) + } —
drh’a, zk: [ ’ R2k2

January 23-24
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If no SOC, then Ys(k) = E, = (hk)2/m
Equation for energy: Tﬂs — Z [LIS k‘i ; :| 0,
hz
Eo = - nd (r) oc e7/%

January 23-24 VSSUPr2014
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for the most general form of SOC,
Vso(k) = Z (Liki +hi)é;,

where 4; 1s the strength of SOC in the direction ; = (x, v, ) and /; denotes
the effective Zeeman field. The eigenenergy E(q) of a two-body eigenstate
with momentum q satisfies the equation:

2\ | ]
A2 (AR =4[ S ik G+ 2hy)| !

m 1 Z < +
. k,q — 7 . 2 - ’
dra;  V - 1 Ekqleiq = 2izr,y.2(Aigi +200)7] 2ek

where & = E(q) —€gyx—€g_gand g = k?/(2m).

L. Dong, L. Jiang, HH, & H. Pu, Phys. Rer. A 87, 043616 (2013).
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[The pairé may have an effective mass larger than Qm]

For example, for the bound state with zero center-of-mass momentum
q = 0, 1t would have a quadratic dispersion for small p.

2 2 2
pr pi‘ Pf
E = FE(0 : : —.

The effective mass of the bound state M; (i = x, y, z) can then be deter-
mined directly from this dispersion relation.

January 23-24 VSSUPr2014
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Two-particle bound state with ERD-SOC QUANTUM-ATOM OPTICS
=0
1.20 —
| ——Q/E=0.8
115 ':I - - - Q/E=2.0 A
—-—-Q/E=3.2
= 110} 1
1.05 |- v i
\ .\ ‘\‘.
0.00 "______rfr|| 1.00 . e = - :
0.00 025 050 075 1.00 1.25 0.0 0.5 1.0 1.5 2.0
1/(ka) l/(ka)
(a) (b)

Energy —E(g = 0) (a) and effective mass ratio y = My /(2m) (b) of the two-

particle ground bound state in the presence of 1D equal-weight Rashba—Dresselhaus SOC,
at zero detuning o = 0 and at three coupling strengths of Raman beams: Q = 0.8E;
(solid line), 2E, (dashed line), and 3.2 E, (dot-dashed line). The horizontal dotted lines in
(a) correspond to the threshold energies —2 E,i, Where the bound states disappear.

Two features: (1) bound state at a, > 0 only and ERD SOC does not
favour two-body bound state; (11) In the axis of SOC, pair mass > 2m.
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Franck-Condon factor (Fermi golden rule again):

E; — Eq
f

F(w) =D Vip | Pap)]° 6 |w — w3y =

final state energy E;

Initial state energy of the two-particle bound state

January 23-24 VSSUPr2014



o~ AUSTRALIAN RESEARCH COUNCIL
. =~ CENTRE OF EXCELLENCE FOR
Two-particle bound state (rf-spectroscopy) « QUANTUM-ATOM OPTICS

2

h” (ki +¢°)

n’ (q+ kre,)

E. L —enp L + /h?2 L \2g2 +
a= B 2m \/ 1z 2m
\/ \°/
RF field \/ — \/
\/\/ \/\./
January 23-24 VSSUPr2014
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O T T
w/E,
(b)

(a) Momentum-resolved rtf spectroscopy (a) and integrated rf spectroscopy (b) of

the two-particle bound state at 0 = 0 and Q = 2E}-. The energy of rf photon @ is measured
in units of a binding energy Ep = lﬂ(maf.) and we have set w3 = 0. In the right
panel, the dashed line in the main figure plots the rf line-shape in the absence of SOC:
Flw)= 2/n JMUE The inset highlights the different contribution from the two
final states, as described in the text.

January 23-24 to be observed ... VSSUP2014
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The partition function: z — fD[w(r,r),&(r,r)] exp{—S[w(r,r),yﬁ(r,r)]}

. _ p _ _
(aCtIOI’]) S[I/f.vf]=f dr[/ a’rz Yo (r, 7)o Yo (r,7) + 7‘((1/!.1/!)]
( a

)

2 = fD[(b.fi);A.A] exp {fdtfdrfdr’fdr’ |:—%<i>(r.r)g—1<b(r’.r’) — A([I}T)LS(r —1)8(r — r’)} — gzsk}
Z 0

k

G,: Green function of fermions

(Mean-field) S —]ﬁdr/dr (—A—%) —lTl‘ln[—g_]]—l—ﬁzg
" Up) 2 0Ty ok

(Pair fluctuations) AS :kBTi Z [—T ()18 A(¢)5A(g)
V

9=9:1V»  T°(q,iv,): Green function of Cooper pairs

L. Jiang, X.-J. Liu, HH, & H. Pu, PRA 84, 063618 (2011); Carlos Sa de Melo ¢ a/. PRL. (1993).
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Two-body study I: bound state with Rashba S@

Rashba SO coupling, 3D Fermi gas

AS =Y [T ()] 6A(q)A(g). I'(q,m): Green function of pairs

q.,ilVn
B m 1 1 —2f (Ex.a) 1
r'(0,w) = — = i — Bys =& &M
(0, ) Amh?a, 2 ; [2 w0t —2Ey , - €k ket = S .
5(q.w) = —ImIn[-T"(q.iv, — w + ?'_O+)].0 —————
1.5 % 2
B ol density of states
= N
N TR A s
- 2 1. 0 1 2
? LOF R ! hzf(m),ﬂ) 7 b2
) “‘Y : 2
~= L et ik~ i (mha) =1 _
UON ““ 1 :l -------------------------------- ) )
LSt 1 0 =
‘t“ : \_._‘._.‘"-.;1_ __________________________
OO 1 i 1 i : 1 1 i 1 i 1 i 1 i I
4 -2 -1 0 1 2 3 4 432

op(q,w) = mO(w — € + iup)
January 23-24

1 (0+20)/(m)0)
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Pairs have anisotropic mass: M, = 2m, but

2.0

1.8

"y = 1.53 at unitarity (h=0)

—
(=

T BEC/ T BECO
=
oo

=
=)

hz/(m ra )

At unitarity, size of rashbons: a ~ A% /(m\) and the scattering length: az ~ 3h%/(ml.).

Rashbons are created by strong Rashba spin-orbit coupling !

HH, L. Jiang, X.-J. Liu, & H. Pu, Phys. Ren. Lett. 107, 195304(2011).

January 23-24
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Rashbons are created by strong Rashba spin-orbit coupling !

J. P. Vyasanakere & V. B. Shenoy, New J. Phys. 14, 043041 (2012).

January 23-24 VSSUPr2014
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Problem:

Consider the Rashba spin-orbit coupling, if atoms occupy
the low-helicity branch, which may be regarded as a new
spin-state, what is the effective interaction between atoms
in this new spin-state?

January 23-24 VSSUPr2014
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Solution: Rewrite the interatomic interaction using the
field operator in the helicity representation!

. Rk (2m)+h A(k, +ik,)
Ak, —iky) B*E*/(2m) — h

and. by a spin-rotation we obtain the single-particle spectrum.

where a = +, — denotes the ditferent branch (helicity) of spectrum.

Consider now the spin-rotation. For the upper branch (o« = +), we need to solve,

/ : .
+h =\ B2 422 (K2 +k2) iX(ky — iky) u (k)| ;

—iX (key + ik, —h— vf'h.? + A2 (B2 4+ R2) | | vs (k)

January 23-24 VSSUPr2014
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Let us define two angles:

;:‘-..T
(e = arccos —,

.
L_

0 . ( h \° 1 h
k — arctan \ /‘S,"!le_ B - )\;{._

%

where k|, = \Lg + k7. Tt is easy to see that, u (k) = cos#y and v, (k) = —isin GreToe We
find similarly that, for the lower branch (o« = —), u_(k) = —isin bre % and v_ (k) = cos ty.

Thus. we have,

k+) cos By —isin Gye T E kT)

k—) —isin B e vk cos by k1)

or alternativelv,

1)
k|

) { isinfe ' cosby J k—)

~
E
\k

L

| R

‘ _ { costy  isin er_“*’k} (|k—|—) ‘ |
) \ k=) )

J

January 23-24 VSSUPr2014



|
AUSTRALIAN RESEARCH COUNCIL

. . .« e . Z=~~2 CENTRE OF EXCELLENCE FOR
More on (effective) interatomic interactions QUANTUM-ATOM OPTICS

In general, we would have some verv complicated interaction terms atter the spin-rotation.

For example, for the spin-rotation (i.e., Rashba SO).

( kT) \ [ cos Hy i sin B etk

k k|) ) { i sin He 0k cos by

I |
—_

=
e

b aract S T 4 o+ . L i
the interaction term H,; = Up Dy 1o o Vi1t a_k. Vq—k'.| VK] 1S glven bv,

T i + - —id + R ey /T : -+
Up Y [r—u&z Oxig . — isin Oge” =y 'k._] [—J sin Bg_xe "%y . + cosbq_xt q—k.—}
KK .q

P {r’ sinfg_ye Yak iy o +costywtlg ik — [FUE- Bt o+ 1 8in Bre' V¥ g '1-:’.—] :
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In case of a large Zeeman field:
'Hf,{: ~ Uy Z (sin Be ™% cos q—1x COS by sIn b‘kfeé"k’) Uy T g1/, — Uk — s
kk g

S . : S : —i(dp—dys )|+ o+ . .
~ Uy Z [ru& Fy s1n B cos by sin e k' } U, Vgx - Vg—Kk — VK, —
kK .q

where in the second line we take q = 0 at cos#,_y and cosf_ to have a well-defined

two-bodyv interaction. The angle #y is given by,
/\FICJ_

k. ik,
VR4 Ak 4+ B |

and the angle ¢y satisfies, =¥ — !
vl

th = arctan {

We then have.

Ef’f e
nu‘ — Z iﬂ(k k q _x, VoK, VK, —»
kk'.gq

where

. . _ , il
15 (k — k') = cosbfysinby cos by sinbype (r—du)

Uy (Fee — ikey) (KL + u;;)

+ VI h )\J + (k)" \‘If_‘h,-"")\}z—l— (F:J_)Q

January 23-24 is the effective p-wave interaction between fermions in the lower branch VSSUP2014
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s-wave + p-wave ? p-wave

In our nature, no p-wave superconductors found so far !!!

January 23-24 VSSUPr2014
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Two-body study II: bound state with finite g |

h2k? 5
= + Asokyoy, + > Oy + 5 0z

H

z

Y

e(k =0,k =0)/E,

0
er"l'(r 1 O X 10—3
single-particle spectrum

|
o
o~
O-= ND W P O1L O

0.1 0.2 3 0.4 0:5

0.
O/Er
two-particle spectrum

L. Dong, L. Jiang, HH, & H. Pu, Phys. Rer. A 87, 043616 (2013).
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The significance of finite q¢gy

 Implying inhomogeneous Fulde-Ferrell
pairing, to be detailed later;

* qcoym 1s along the direction of SOC;

* The magnitude of g¢gy; can be greatly
enlarged by many-body effect.

January 23-24 VSSUPr2014
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(® B-field
X
- e =0

Fermi g

H )

——9/2 Mf=—7/2

synthetic spin-orbit coupling

January 23-24  Single-particle spectrum

two-particle bound state

"y =1.53 at unitarity (h=0)

1 (mra)

e 7
qcom 1= 0 ()

OEr

VSSuUPr2014
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* Experimental realization of SOC and two-body study (I & II)

(No Zeeman field, two-body I)
* Anisotropic superfluidity of rashbons

(VYo s] Tele)e T - 5 5008 80“0 ol OOO 000,08 ,.°
ocg

M h=006E, °FF

(Out-of-plane B-field, p-wave pairing) 7{(8“

Uvo

ooooooooooooooooooooo 0600000000088
00
©000000000000000000980000000000000C

CdGM ooaooee°°°°°°

* Topological superfluid and Majorana fermions g7

©000000000000000g000000000000000000000,,

F00000000000000 Oosgioogooogogooooooooo
& 0

0508288888 82828

0 9-9

)
Qooioooouvu V09808 g

202029%0%

Normal Fermi gas 7

(In-plane B-field, two-body I1)
* Fulde-Ferrell superfluidity
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Lecture Il: many-body physics, mean-field
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I. MODEL HAMILTONIAN

Let us start trom the model Hamiltonian for a 3D Fermi gas with 3D Rashba spin-orbit coupling }\(rrx}jcl. +oy fcy +o. L]
and a magnetic field h along z-direction, H = Hy + ‘H,;,:. where

, . i ot Moz =B A —iky) | [ (x) -
g f [ ,'I . Al } ék - - = T Y I l
o ./.EX Vi (%), 9y (x) [ Mby +iky) & — Moo +h V1 (%) v
and the interaction Hamiltonian 1s.

Hine = Us / dxcis] (x) 0] (%) v (%) 6 (x). (2)

| ]

Here, we have defined & = —h2V2/(2m) — u, ky = —is. ljcy = —1d,., and k, = —i8,.

January 23-24 VSSUPr2014
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II. MEAN-FIELD BDG THEORY

According to Lin’s two-body caldulation, let us assume a FF-like order parameter A(x) = —Up (v (x) ¥ (x)) =

Aexpligz] along the z-axis and consider the mean-field decoupling,

. + 1
Hint == —/dx {i\(x)uf (x) ) (x) + H.C.} T fcfx ‘A(X)‘E (3)
Within this mean-field BdG theory, the total Hamiltonian can be written into the form,
, 1 . A? i
Hyr = = [ dx®' (x) Hpag® (x) — —V + Z 3% (4)
2 L'U "
where @ (x) = [V (x) .0 (x]). 1IT (x). ! (x)17 is a Nambu spinor, and
S+ Mo — b Ake —iky) 0 —A(x)
, _ | Alkz+iky) &x— Mk +h A (x) 0 -
Hpac = 0 A*(x) | —&e+Ak.+h Ak, +ik,) | (5)
—A*(x) 0 Aky —iky) —&— Ak, —h

January 23-24 VSSUPr2014
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Bogoliubov transformation

o b
|
=
i 1
_I_
=
b

=
_I-I_
|
=
<
_I-I_
_I_
=
o

OTXtT E XD

field operators for Bogoliubov quasiparticles

January 23-24 VSSUPr2014
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P~
=

A. Bogoliubov quasiparticles for the Hamiltonian Hz,~

Now, let us turn to solve the Bogoliubov equation,

Hpac Pk (x

where

A(x) = Aye'd”

Dy ICX) =

and Ey are the wave-function and energy of the Bogoliubov quasiparticles, respectively. Therefore, we will have,

Ukt
Uk |
‘L.’k 2

Hpac]

Uk |

where [Hpag] is given by,

January 23-24

) = Ex P (x) (6)
Uge E,-l-t'q;_,.-"'?
U E,-l—";qz_,.-"'? dex _
onreia/2 | € (7)
Uk,‘ € gz /2
Uk
=Ey | X (8)
’L—'kl
Uk|
VSSUP2014
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Mean-field theory : general treatment QUANTUM-ATOM OPTICS
Cxtge. TA(Kz+2) — P A (kyp — iky) 0 —A
A (kp +tky) fktge. — A (k: +2)+ R A 0 9
0 A e +)\(L — %) +h Ak, + k) - )
—A 0 /\( \,l _‘gk—%e_: _)\(-Ifz _%) —h

By diagonalizing the matrix [Hp4c|, we thus obtain the eigenvalue Ey and the vector [uky, uk|. Vk|, Vk| . ]T. Actually,
we obtain the field operator for Bogoliubov quasiparticles.

Qyp — / [tii.e_fqz;?u] {K) - Iti{e—quQU (X) _|_ 'L:iz] €+?.q2,."'2L:?— (X\] + 'i'_,'f{l e_i_?'qu.-glj?_ (X)} E,—ikxdxl (10)

Let us now rewrite the mean-field Hamiltonian into the form.
‘ 1 A? . -
H_.UFZ;ZEkOIOk—(T‘ +Zc‘;k+ (11)
<k "0 k

Note that, for the Bogoliubov Hamiltonian. we always have the particle-hole symmetry. which means that for every
solution with Ey = 0 (say particle, ay ). we must have another solution (hole, a_y ) with E_;, = —FE3 < 0. These two
solutions are physically the same. Thus, we may rewrite the Hamiltonian,

—

A2

Hur =5 (Exoifox — Bx6x6Ty) = 7V + 5 ) (Gierg/ze. +Ekmg/oa) (12)
< k. Ep>0 0 “ Tk
1 — e _ A2 1 . 1 .
= ? Z Ek {_('lk Ak T O._k:_'“l L) — [—‘n - ; (fk—q e T 'gk—c; Je_ —) Z EL (13)
“ k. Ex>0 L Tk “ k. Ep>0
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s@ AUSTRALIAN RESEARCH COUNCIL
- CENTRE OF EXCELLENCE FOR

Mean-field theory : general treatment ~~, QUANTUM-ATOM OPTICS

B. Thermodynamic potential

For given chemical potential i and temperature 7', we have two independent parameters in the BdG equation: the
strength of gap parameter A and the FF momentum ¢. These two parameters should be determined by minimizing

the grand thermodynamic potential, which takes the following form,

0 1 ) 1 A2 ksT -
v > (Gerasze. +Ekmgre.) — 3 Y Exf - T f. Y In {1 +e ’*BT} ; (14)
T <Y k. E.>0 - EL>0
where the last term is from the first term in Eq. (13).
@ e
9 “T70.0002
mf ] (08 _
— = 0 (gap equation)
dA
'0.0000 00 .
{ —=—— =0 (gap equation)
dq
) aﬂ -
*0.000, EM = n (number equation)
\
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;]

— AUSTRALIAN RESEARCH COUNCIL
r . Z=~~—2> CENTRE OF EXCELLENCE FOR
Mean-field theory : general treatment QUANTUM-ATOM OPTICS

To calculate the physical quantities of interest, we express the Nambu
spinor in terms of the field operators of Bogoliubov quasiparticles.

Note that, in the presence of harmonic
traps, the mean-field treatment will be a bit
different (to be discussed later).

Fluctuations are difficult to handle...

January 23-24 VSSUPr2014
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Vso = KR (+ kyO'X — kXO'y) and Zeeman field h

p-wave

January 23-24 VSSUPr2014
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Anisotropic superfluidity (no Zeeman field)

Let us focus on Rashba spin-orbit coupling...

Our work:

— PRL 107, 195304 (2011);

— PRA 84, 063618 (2011).
Others:

— Shenoy et al., PRB (2011);

— Iskinetal., PRL (2011);

— Sade Melo et al., PRA (2012);

January 23-24 VSSUPr2014
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For the condensed phase, we solve the mean-field action:

p A 1 - B
80:[0 drfdr(—a?)—ETrln[—g01]+V;§k

In the unitarity limit: m———— .
0 0.5
2.0

triplet p-wave pairing

(Wi, ¥ _ ey

1.5

£ 9

1.0

k Ik

0.5

0.0

singlet s-wave pairing
1.5

2,

= 1.0
whe

(e, ¥ i

0.5

0.0 L L L
00 05 10 15 20 25 00 05 10 15 20 25 30

k/ k Ik

I

weak SO coupling  stronger SO coupling

Rashbons condense into a mixed singlet-triplet state!

See also, Gor'’kov & Rashba, Phys. Rev. Lett. 2001.
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0.08 ————7+—r—+—+71+—

<
o
o)

o
=
o

SM( _03 m_)(SFfH)
o
-]
=

Swinburne: ’cl‘“
Bragg spectroscopy é
)

0.0 A TP B B
0.0 05 1.0 1.5 2.0

Ak g,

The smoking-gun of anisotropic superfluidity:

spin dynamic structure factor at long wavelength
January 23-24 VSSUP2014
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Vso = KR (+ kyO'X — kXO'y) and Zeeman field h

p-wave

January 23-24 VSSUPr2014
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Topological superfluidity
(out-of-plane Zeeman field)

Our work:

— PRAS85, 021603(R) (2012);

— PRAS85, 033622 (2012);

—  PRL 110, 020401 (2013);

— PRAS87,013622 (2013).
Others:

— Mueller et al., PRA (2012);

— Sade Melo et al., PRL (2012);
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2D chiral p-wave superconductor: Ak)=A, (kx + ik y)
H = Z ——,u cle, +(A(k)c C_ -I—CC)Read&Green PRB 2000

T
- - - +
Defining a Nambu spinor ¥, = (Ck y C_y )

L -
SRS
1 . # c
H :EZ(CK C—k)| 2m K2 (Cf]
“ ~AK) —— N
i 2m
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J’:ﬁﬁﬁ"'

N
\ H 74
‘%m x
NN

Consider the spin vector k?
in  space: —B(k)-o where B,(k) =u— o

i i Ly B.(l) = Boks

il \ / Y o \ B, (k) = Aok,

! applicable to 1D as well:

VXL AN

A topological defect — Skyrmion — forms when p > 0.
January 23-24 VSSUP2014
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P-wave superconductors: zero vortex-core mode—_ QUANTUM-ATOM OPTICS

CdGM bound states
q

-

ot A’
,O’ Ag-*--—E— f e flUf/A

D F

Caroli, de Gennes, Matricon theory ('64)

if conventional superconductors

A
E
I Ag
If weak p-wave superconductors: 9 >
Kopnin and Salomaa, 91 'd \
of zero mode

D’ index theorem, Volovik JETP 93
/ Tewari et al, PRL 07
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Simple idea of Majorana (1937):
An ordinary Dirac fermion = two real fermions

cC=vy,—ly,

Majorana fermion: particle is its own antiparticle

Yy=17

January 23-24 VSSUPr2014
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Majorana fermions

Particle-hole symmetry in BdG equations:

u_(r)y—v_(r)

E —> —-E
n n
“non-topological” “topological”
E ¢ )
A A
I
E E E=0 s
R
— E
I Maj f i m
A r,=r, A ajorana fermions
1. u_ =+v,
2. U_=-V_
transition occurs only if energy gap close.
VSSUP2014
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Vso = KR (+ kyO'X — kXO'y) and Zeeman field h

p-wave

January 23-24 VSSUPr2014
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Recipe for topological superfluid: (C. Zhang, PRL 08 for cold-atoms)

Feshbach s-wave resonance
Rashba spin-orbit coupling
Large Zeeman field

January 23-24 VSSUPr2014
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2D trapped SOC atomic Fermi gases + BdG . QUANTUM-ATOM OPTICS
Hamiltonian
H = f dT[H[](I':l + HI(TH Mean-field BdG theory:
Single-particle Hamiltonian (Rashba SOC) HpacWy (v) = BT, ()
Ho(r) = Z YIHG (x) e + [ﬁ'h’so(r}ﬁ"i + H.c. Un (r) = [ugn, uyg, vin,vig]"
a=T,]
Vsolr) = —i\(8y + i0y) Hi(x) Vso(r) 0 —Afr)
B T , Mo — | Vio®) 1) Aw) 0
M7 = —h*V2/(2M) MW rs 2 p— ho., 0 A() —HS(r) Vi,(r)
—.&*(I‘) {] ‘Vso(l‘) —Hf(l')
Interaction Hamiltonian

Hi(r) = U[]#} (v) TrI (v) W (I)LT (r) Self-consistency:

A = —(Un/2) 32, uinviy f(Ey) + upyei,f (—Ey)l

ne (1) = (Y2) %, [ty F(Ey) + [vanl” F(—Ey)]

Single vortex

Alr) = Ar)e™

January 23-24 VSSUPr2014
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X.-J. Liu, L. Jiang, H. Pu, and HH, Phys. Ren. /A 85, 021603(R) (2012).
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h =0.6E_ (Topological superfluid phase)

1.5
u,(r)

1.0

05911 - v (r) 1 0.5 Zero-energy CAGM .

0.0

0.5

Wave tunctions of Majorana fermions

-5 _ S|
(a) E,. =—48x10°E -1.5 (b) E, =+4.8x10°E_
0.0 0.2 " 08 1.0 0.0 0.2 0. 1.0
rf‘rF n’rr

1. Bond and anti-bond hybridization u_=v_ and u, = -v_ solutions.

2. Quasiparticle tunneling energy splitting.
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0.3
£702 |
A
\‘
0.1 l‘.
0.0 L= e _ NN L V\Y!
04 02 00 02 04 04 -02 00 02 04
EIE, EIE,

Directly: Use the spatially resolved rf-spectroscopy (cold-atom STM).
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Equal Rashba and Dresselhaus SOC

One-dimensional
gas tube

///// R/mn taser?
pr

Raman laserl TOPOIO'
gical
LRI

h? o2 s 1
Ho = =5 + Ve (2) = = ho + Ao, Trivial /AN
>
Q
h = > h > /A% + ;i (topological criterion)
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Majorana fermions

Requires: T <0.1T¢

Currently for 4K atoms: T = 0.6T

1.0 0.5 0.0 0.5 1.0
x/xF

X.-J. Liu and HH, Phys. Rez. A 85, 033622 (2012).
X.-J. Liu, Phys. Ren. A 87, 013622 (2013).
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PhysicCs

Synopsis: Useful Impurities

Universal Impurity-Induced Bound State in Topological Superfluids

Hui Hu, Lei Jiang, Han Pu, Yan Chen, and Xia-Ji Liu
Phys. Rev. Lett. 110, 020401 (2013}
Published January 10, 2013

H. Hu et al., Phys. Rev. Lett. (2013}

Impurities are not always just unwanted defects that degrade the properties of a solid. Sometimes they can be used as sensitive probes of the physical properties of
their host; for instance, magnetic impurities in unconventional superconductors have helped decipher the underlying pairing mechanism. Writing in Physical Review
Letfers, Hui Hu, at the Centre for Atomic Optics and Ultrafast Spectroscopy in Australia, and co-workers discuss how to use magnetic and nonmagnetic impurities to
characterize a state of matter that is hard to observe experimentally: a topological superfluid.

Topological superfluids are completely frictionless fluids of fermions in which quantum states are topologically protected from scattering and decoherence. According
to theory, topological superluids would host excitations known as Majorana quasiparticles, which are capable of forming robust guantum superposition states and are
therefore of great interest for quantum computing applications. Certain superconductors, nanowires, and three-dimensional topological insulators are conjectured to
host a topological superfluid, but to date it hasn't been possible to convincingly confirm the existence of this state of matter in any of these systems.

The authors calculated the electronic states close to an impurity embedded in a topological superfluid. Their findings suggest that an electronic state, bound to the
impurity, would emerge in an otherwise gapped spectrum—regardless of the type of impurity or superfluid. Such a midgap state would lead to spectroscopic
observables that could provide unambiguous signatures of the topological superfluid state. Further, their calculations show that the wave function of such an impurity
state has the same spatial symmetry as a Majorana state, which may suggest the use of controlled impurities in topological superfluids as elementary quantum bits.
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Fulde-Ferrell iInhomogeneous superfluidity
(in-plane Zeeman field)

Our work:

— PRA87, 043613 (R) (2013);
— PRA88, 023622 (2013);

— PRA88, 043607 (2013);

— NJP 15, 093037 (2013).
Others:

— C. Zhang et al., PRA (2013);
— Yiand Zhang et al., PRL (2013);
— Shenoy, PRA (2013);

— Puetal., NJP (2013);

— Zhou et al., PRA (2013).
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h2k? 5 Q
H == Zm +ﬂ.sokx0-y +§O'y +EO-Z
x 1073
|
[ Han Pu: FF superfluid in the many-body setting?
>
X
1
two-particle spectrum Fulde Ferrell

January 23-24 VSSUPr2014



— AUSTRALIAN RESEARCH COUNCIL
, . e #~== CENTRE OF EXCELLENCE FOR
Fulde-Ferrell pairing — a 50-year-old puzzle QUANTUM-ATOM OPTICS

« BCS Cooper pairs have zero momentum

 Population imbalance leads to finite-momentum pairs (FF 1964, see also LO)
 Fulde-Ferrell-Larkin-Ovichinnikov (FFLO) instability results in textured states
Spontaneously breaks translational symmetry

Q oc Bpy—Ep,
A(X) oc el A(X) oc cos(Q-X)
FF superfluid LLO superfluid
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M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle, Science 311, 492 (2006)

O

v
¥
O

¥
A%

U VU
3D trapped Fermi gas: superfluid core with polarized halo...
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Phase Separation

15-A1)
S
oW
1)

FF(LO) is not favored in 3D.
Sheehy and Radzihovsky, Ann. Phys. (2007)

51_- -2 511,; 0 5_ 1 2 _kF'ﬂs

Enhanced by spin-orbit coupling?

Yes! The deformation of Fermi surfaces due to spin-orbit coupling and in-plane
Zeeman field provides another mechanics for FF pairing instability (Barzykin &
Gor’kov PRL 2002; now realized by a number of researchers: Han Pu, V. B.
Shenoy, C. Zhang, W. Y1, W. Zhang...)
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Fermi surfaces (SOC & in-plane field)
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Fermi surfaces (SOC & in-plane field) Fermi surfaces (population imbalance)

field h k

upper branch — 0 . _k —I_Q/ 2
_ Q- E
k+q/2 -
lower branch Q ” EFT _EF:L
LO superfluid

g oc h
FF superfluid
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For the FF superfluid, we minimize the mean-field action by assuming A, (r) = Ae'"

B 2
sozf dt/dr(—%) —%Trln[—go‘l]nLgZék
k

Q=2E,
(a) o ' .V o TF
o) 0.78} (b) BCS ]
mf
- ~ -0.80 ]
0000 =
S
w -0.82 -
=" - -0.84 -
<< = 00 02 04 06 08 10
R SIE

F

FF is always favorable!

X.-J. Liu and HH, Phys. Ren. A 87, 043616(R) (2013).
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Fulde-Ferrell phase diagram: ERDSOC
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T=0.05T¢ Qcom =0
12 J T T T T 10—4
Normal Fermi gas
2

1419

s,

(b) Q,=2.0E,

January 23-24 X.-J. Liu and HH, Phys. Rev. A 87, 043616(R) (2013). VSSUP2014
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P (k,w) = Ay [k+ (kr ezjék —w| f (G —w)

(b) 5=0.4E, (c) 5=0.8E,

1 0 1 -1 0 1 -1 0 1
k Ik, k Jk, kJk,

X.-J. Liu and HH, Phys. Rev. A 87, 043616(R) (2013).
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Normal Fermi gas |

/T

0.4 .
Fulde-Ferrell superfluid
0.2F
00 s 1 s 1 s 1 " 1
0.0 0.2 0.4 0.6 0.8

hE,
finite-T mean-field phase diagram

HH and X.-J. Liu, NJP 15, 093037 (2013).

January 23-24

4. = 0 indicates FF instability

0.00

-1.0 —OI.S 0.0 0;5 1.0

Thouless criterion leads to a
better critical temperature.

1OF

0.8

206L

=

T/T

04} .
Mean field
ool @ Thouless
00 " 1 " 1 " 1 " 1
0.0 0.2 0.4 0.6 0.8

WE,

X.-J. Liu, PRA 88, 043607 (2013).
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Topological + Fulde-Ferrell = Topological Fulde-Ferrell ?
1.5

| 3=0.6EF I'SE
1.0F

0.5}

. l
"'“““.E I 0.0L
FJ;] L
05 2339339393093 PAIIIIPW
j v/ (2m)
0.0 - I
0 ] 2 3 4
QR/}E‘F

January 23-24 X—J Liu and HH, P/?)/J‘ Rev. A 88, 023622 (2013) VSSUP2014
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(out-of-plane Zeeman field) (in-plane Zeeman field)
Anisotropic superfluidity Topological superfluidity Fulde-Ferrell superfluidity

Normal Fermi gas ]|

F ludc-Fcrfcll superfluid

(gapless)

(gapped)

-1.0 -0.5 0.0 0.5 1.0

7: r--'-,»llpv*x Be8a"]
Our work: SeEL ety Our work
—  PRL 107, 195304 (2011); (d(M?/Woooo — PRAB87,043613(R) (2013);
— PRA 84, 063618 (2011). o RS - — PRA88, 023622 (2013);
Others: ’°°°°°}/ZES ~ PRABS, 043607 (2013);
" Shenoy et al.,, PRB (2011); — NJP 15, 093037 (2013).
— Iskinetal., PRL (2011); QU Others:
— Sade Melo et al., PRA (2012); o o . — C.Zhang etal., PRA (2013);
- Our work: — Yiand Zhang et al., PRL (2013);
— PRABSS5, 021603(R) (2012); —  Shenoy, PRA (2013);
— PRABSS5, 033622 (2012); — Puetal., NJP (2013);
— PRL 110, 020401 (2013); — Zhouet al., PRA (2013).
— PRAB87, 013622 (2013).
Others:
— Mueller et al., PRA (2012);
— Sade Melo et al., PRL (2012); VSSUP2014
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