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Condensed Matter Emulation

Condensed Matter Cold Atoms
• Disordered 
• Unknown interactions  
• Little control

• Tunable dispersion 
• Tunable interactions  
• “Perfect” control 
• Clean or controlled disorder 
• Engineered Hamiltonians



TCMPThese 2 Lectures

• Lecture 1:  
• Introduction to emulation 
• The integer/fractional quantum Hall effect (solid state) 
• Emulation of the quantum Hall effect (ultra-cold atoms) 

!
• Lecture 2:  

• Coupled Atom Cavity (CAC) systems 
• Bose-Hubbard model (ultra-cold gases and CAC systems)    
• Fractional Quantum Hall Effect (CAC systems) 
• Supersolids (ultra-cold gases and CAC systems) 



TCMPReference Material

• Condensed matter emulation 
•   Ultracold atomic gases in optical lattices: mimicking condensed 

matter physics and beyond, M. Lewenstein, A. Sanpera, V. 
Ahufinger, B. Damski, A. Sen and U. Sen, Advances in Physics 
56, 243 (2007) 

•   Many-body physics with ultracold gases, I. Bloch, J. Dalibard and 
W. Zwerger, Rev. Mod. Phys. 80, 885 (2008) 

• Integer/Fractional Quantum Hall effect 
•   Introduction to the fractional quantum Hall effect, S. M. Girvin, 

http://www.bourbaphy.fr/girvin.ps 
•   Rotating trapped Bose-Einstein condensates, A. L. Fetter, Rev. 

Mod. Phys. 81, 647 (2009)

http://www.bourbaphy.fr/girvin.ps


TCMPEquivalence of Physical Systems
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TCMPEquivalence of Physical Systems
YBCO superconductor Optical Lattice
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TCMPThe Quantum Hall Effect



TCMPThe Hall Effect

F = �e (E + v ⇥B) = FE + FM

Force on carrier

Equilibrium
FE = �FM

y-component
Fy = evxBz � eEy = 0J = �nev

Ey = �JxBz

ne

Hall coefficient

RH =
Ey

JxBz
= � 1

ne



TCMPExperimental Setup (QHE)



TCMPExperimental Observation (IQHE)
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TCMPQuantum Treatment
Schrodinger Equation
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Choice of gauge
B = ⇥�A = Bz k̂

A = ĵBzx (Landau gauge)

A = �îBzy/2 + ĵBzx/2 (Symmetric gauge)

Physical results independent of gauge 
We choose Landau gauge



TCMPLandau Gauge
Schrodinger Equation (Landau gauge)

Drop z-dependence (2DEG)

Vector potential independent of y

Plane wave solutions for y-direction: 1D  
Schrodinger Equation
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TCMP1D Schrodinger Equation

Schrodinger Equation for 1D harmonic oscillator
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Vertex of parabolic potential displaced by ��k/eB

Energy eigenvalues
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The eigenvalues (Landau levels) depend on n but not k



TCMPLandau Levels DOS
B=0: 2D electron DOS is a constant

|B|>0: 2D electron DOS is a series of delta functions

Landau Levels (LLs)
Number of states in each LL per unit area

nB = eB/h = B/�0



TCMPIQHE



TCMPLandau Levels: Transport
Number of occupied LLs

� =
n2D

nB
= 2⇥l2bn2D

Between LLs (n integer)
Bn =

hn2D

en

Fermi energy between LLs: low DOS (incompressible)
Within LL high DOS (compressible)



TCMPConfinement
Hall bar schematicLLs: confined geometry

Fermi energy between LLs

Edge state transport
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TCMPAssumptions: No disorder

• Scattering between edge states in the same edge 
• Is forward hence no effect (exception high currents) 

• Scattering between opposing edges 
• Very very weak if Fermi energy is between Landau levels 

• Surely Fermi energy adjusts to always be in a LL: Why are plateaus 
wide? 
• Disorder important: localized states between LLs in bulk 
• Finite DOS between LLs 
• Do not contribute to electrical properties (localized)



TCMPThe Surprise (FQHE)



TCMPTheoretical Model of FQHE
• Controlled by Coulomb repulsion between electrons 

• Ignore disorder 
• Discover the nature of the special many-body correlated state 

• Consider symmetric gauge (remember results are gauge independent) 
!
!

• Preserves rotational symmetry 
• Consider only Lowest Landau Level (LLL): No interactions 
!
!
• All the states are degenerate: can have any linear combination 
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TCMPThe LLL Many-Body State
�[z] = f [z]e�
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f is a polynomial representing the Slater determinant 
with all states occupied

2 particles
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TCMPLauglin Variational Ansatz
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To be analytic m must be an integer
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In the plasma analogy the electron density is
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Other wave-functions developed to describe more 
general states in the hierarchy of rational filling 
factors at which quantized Hall plateaus were 

observed 



TCMPPlasma Analogy (I)
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• Second term in U (Poissons Equation)
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TCMPPlasma Analogy (II)
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Potential energy of interaction 
among a group of objects 

with charge m

Energy of charge m objects 
interacting with negative 

background

2�l2b
Area containing one 

flux quantum 
Background charge 

density B/�0

Neutrality nm + �B = 0 n =
1
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1
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For a filled LL, with m =1, this is the correct answer for the density, 
since every single-particle state is occupied and there is one state per 

flux quantum 



TCMPExcitation Gap?
•  Every pair of particles has a relative angular momentum greater than 

or equal to m 
•   Because the relative angular momentum of a pair can change only in 

discrete (even integer) units it turns out that a hard core, repulsion, 
model has an excitation gap 

•   For example for m = 3, any excitation out of the Laughlin ground 
state weakens the nearly ideal correlations by forcing at least one pair 
of particles to have relative angular momentum 1 instead of 3. 

•   This costs energy: hence a gap



TCMPImportance

•   Two Nobel Prizes 
•   IQHE 1985 (Klaus von Klitzing);  
•   FQHE 1998 (Robert Laughlin, Horst Stormer and Daniel Tsui)    
•   The value of the resistance at the plateaus only depends on 

fundamental constants of physics: electric charge (e) and Planck’s 
constant (h) 

•   It is accurate to 1 part in 100000000 
•   The IQHE is used as the primary resistance standard (although 1 

klitzing (h/e2) is 25,813 Ohms)



TCMPLLL One Body States (Ω = 0)
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Angular momentum

Create and destroy one quantum with positive (negative) circular 
polarization and one unit of positive (negative) angular momentum

Lz = xpy � ypx = �
�
a†+a+ � a†�a�

⇥



TCMPLLL One Body States (Ω ≠ 0)
Rotating system

H ⇥
0 = H0 � �Lz = ��⇤ + � (�⇤ � �) a†+a+ + � (�⇤ + �) a†�a�

Eigenvalues
� (n+, n�) = n+� (⇥⇥ � �) + �n� (⇥⇥ + �)

�� �� Eigenvalues are essentially independent of n+

n- becomes the Landau Level index

Landau Levels



TCMPLLL One Body States (Ω)
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n = n+ + n� m = n+ � n�

•   The excitation energy is independent of m forming an inverted 
pyramid of states. For each non-negative integer n there are n +1 
degenerate angular momentum states (-n ... n, in steps of 2) 

•   The degeneracy is lifted 
•   States become nearly degenerate again, forming essentially 

horizontal rows.



TCMPLLL One Body States (Ω ≈ 1)

�/�� � 1

LLL Physics appropriate when

Energy scales
Gap 2���

Interaction energy gn(0) = µ
µ/ (2�⇥�)� 1

Eigenfunctions of LLL
�m � rmei�me�r2/(2d2

�)

•   m =0 represents the vacuum for both circularly polarized modes 
•  The higher states (m >0) can be written as 

⇥m � �me�r2/(2d2
�), where � = (x + iy)/d⇥



TCMPRotation and Magnetic field
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TCMPTypical Movie (Increasing Ω)
Gross-Pitaevskii Simulation



TCMPLLL Condensate Wavefunction

f(�) ⇥
�

j
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•   f(ζ) vanishes at each of the points ζ j which are the positions of the 
nodes of the condensate wave-function 

•  The phase of this wave-function increases by 2π whenever ζ moves in 
the positive sense around any of these zeros 

•  Thus the points ζ j are precisely the positions of the vortices in the 
trial state and minimization with respect to the constants cm is 
effectively the same as minimization with respect to the position of 
the vortices: vortex lattice 
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TCMPEnergy Minimization 
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TCMPLLL Condition (Unrestricted)
µmin � 2�⇥�

1� �̃ ⇥ Z

2Na

Unrestricted minimization!!  
What about vortices?



TCMPHighly Correlated States (ν)

1� �̃ ⇥ Z

2N�a
, where � = 1.1596

Mean field LLL regime:

•   At higher rotation frequencies the meanfield LLL regime should 
eventually disappear through a quantum phase transition, leading to a 
different, highly correlated, manybody ground state. 

•  For meanfield LLL regime 

Nv ⇥
R2

0

d2
�

=

�
8Na�

Z(1� �̃)

⇥ =
N

Nv
=

�
Z(1� �̃)N

8a�



TCMPExact Diagonalization (ν ≥ νc)
•   The equilibrium state in the meanfield LLL regime is a vortex array 

that breaks the rotational symmetry and is not an eigenstate of Lz  
•   Could use exact diagonalisation to study the ground state for 

increasing Nv 

•    Studies have investigated different filling fractions, ν, from 0.5 to 9.  
•   Comparison between the meanfield LLL energy and exact 

diagonalization show that the meanfield vortex lattice is a ground 
state for ν ≥ νc (νc =6) 

•   Hence the meanfield LLL regime is valid for (νc =1)

1� Z

2N�a
⇥ �̃ ⇥ 1� 8�a

ZN



TCMPExact Diagonalization (ν < νc)
•   The groundstates are rotationally symmetric incompressible vortex 

liquids that are eigenstates of Lz  
•   They have close similarities to the bosonic analogs of the Jain 

sequence of fractional quantum Hall states 

•    The simplest of these many body ground states is the bosonic 
Laughlin state 

�Laughlin (r1, r2, ...., rN) ⇥
N�

n<n�

(zn � zn�)2 e�
1
4

P
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•   No off-diagonal long range order and hence no BEC 
•   The Laughlin state vanishes whenever two particles come together, 

enforcing the many-body correlations 

•    The short range two body potential has zero expectation value in this 
correlated state 

•   Strong overlap between exact diagonalization and the Laughlin state 
(ν =1/2)



TCMPPhysics of Transition
•   Consider N bosonic particles in a plane, with 2N degrees of freedom 
•   Vortices appear as the system rotates and the corresponding vortex 

coordinates provide Nv collective degrees of freedom 

•    For slowly rotating systems the 2N particle coordinates provide a 
convenient description 

•   In principle, the Nv collective vortex degrees of freedom should 
reduce the original total 2N degrees of freedom to 2N - Nv , but this is 
unimportant as long as Nv << N 

•   When Nv becomes comparable with N the depletion of the particle 
degrees of freedom becomes crucial 

•   This depletion on the particle degrees of freedom drives the phase 
transition to a wholly new ground state 

•   Hence when ν =N/Nv is small a transition is expected


