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Condensed Matter Cold Atoms

e Disordered Tunable dispersion

e Unknown interactions Tunable interactions

e Little control “Perfect” control
Clean or controlled disorder
Engineered Hamiltonians
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These 2 Lectures
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e Lecture 1:
e Introduction to emulation
e The integer/fractional quantum Hall effect (solid state)
e Emulation of the quantum Hall effect (ultra-cold atoms)

e Lecture 2:
e Coupled Atom Cavity (CAC) systems
e Bose-Hubbard model (ultra-cold gases and CAC systems)
e Fractional Quantum Hall Effect (CAC systems)
e Supersolids (ultra-cold gases and CAC systems)
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Equivalence of Physical Systems
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ANALOGOUS MECHANICAL & ELECTRICAL QUANTITIES
Mechanical Electrical

Displacement Charge
Velocity q( Current
Mass Inductance
Friction Resistance
Mechanical Compliance Capacitance

Amplitude of impressed force Amplitude of impressed emf




Equivalence of Physical Systems =%
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YBCO superconductor Optical Lattice

_ § : T E :
H = _te(a) (Ci,acj,g + h.c. | + UC(s) T 417, —1
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ANALOGOUS CONDENSED MATTER AND OPTICAL LATTICE QUANTITIES
Condensed Matter Atom-Optical

Electron/Holes Fermionic atoms

Coulomb charge coupling S-wave scattering length
Electron mass ) Atomic mass
Coulomb Interaction S-wave Interaction

Electronic tunneling energy Atomic tunneling energy
Atomic ions Optical standing waves
Lattice Constants s A Optical wavelength
Binding energy . Lattice depth
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The Hall Effect

Force on carrier
F=—-¢e(E+vxB)=Fg+Fum
Equilibrium
Fg = —Fum
y-component
F, = ev,B, — eE, =0
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Hall coefticient




Experimental Setup (QHE)
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conduction band
fermi level

z-direction




Experimental Observation (IQHE) +*
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Quantum Treatment

Schrodinger Equation
d
(ihV — qA(r, )" + g@(r,1) | $(r,1) = iAo (r, 1)

B=VxA=B.k
Choice of gauge

A = jB.z (Landau gauge)

A = —iB.y/2+ jB.z/2 (Symmetric gauge)

Physical results independent of gauge

We choose Landau gauge



[Landau Gauge

RN iehB, 0O N (eB,x)*
2m m Oy 2m

Drop z-dependence (2DEG)

+vwﬂwm=Eww

z-direction

Vector potential independent of y

!

Plane wave solutions for y-direction: 1D
Schrodinger Equation




1D Schrodinger Equation

—hQ o +1mw2 CC—l—@ .
2m O0xz2 2 € eB

Schrodinger Equation for 1D harmonic oscillator
Vertex of parabolic potential displaced by —hk/eB

Energy eigenvalues
enk = (N — 1/2)hw., where n=1,2,3, ...

Wavetunction

r—xp) —esml
Vi (x,y) < Hypq l e 2% €™ where l, = \/h/|eB.,]
b

The eigenvalues (Landau levels) depend on # but not k&




[Landau Levels DOS

B=0: 2D electron DOS 1s a constant
IB[>0: 2D electron DOS 1s a series of delta functions

!

Landau Levels (LLs)

Number of states in each LL per unit area

ng = eB/h = B/¢g

Increasing B
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Density of States




o
THE UNIVERSITY OF

MELBOURNE

— Py (h/e2 )

— p,, (@rb units)

! L

4 6 8 10
Magnetic Field (T)




Number of occupied LLs

na2p
"2D _ 9ni2nyp,

np

Between LLs (n integer)

il7l;31)
B, =
en

v

Fermi energy between LLs: low DOS (incompressible)
Within LL high DOS (compressible)

Increasing B

(b) ()




Confinement

LLs: confined geometry

Landau levels

Position Potential

(b)

Hall bar schematic
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Fermi energy between LLs
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Edge state transport
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Assumptions: No disorder
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e Scattering between edge states in the same edge
e [s forward hence no effect (exception high currents)
e Scattering between opposing edges
e Very very weak if Fermi energy is between Landau levels

e Surely Fermi energy adjusts to always be in a LL: Why are plateaus
wide?

e Disorder important: localized states between LLs in bulk
e Finite DOS between LLs

e Do not contribute to electrical properties (localized)
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Theoretical Model of FQHE

e Controlled by Coulomb repulsion between electrons
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e [gnore disorder
e Discover the nature of the special many-body correlated state

e Consider symmetric gauge (remember results are gauge independent)

1
A=—1rxB
2

e Preserves rotational symmetry

e Consider only Lowest Landau Level (LLL): No interactions

1

Om = 5
\/ 27l 2™m|!
e All the states are degenerate: can have any linear combination

N
1

U(z,y) = f( )G_Z’Z‘Q f(z) = | (2 — Zj)

me—%|z\2

2 , where z = (z + 1y)/lp




R T,
f1s a polynomial representing the Slater determinant

, with all states occupied
2 particles

(21)"

flz] = (21)1
3 particles

N part]ivcles
fnlzl =]z = 2)

1<9




Lauglin Variational Ansatz

N

Rl =11GE—2)"  v=1/m
1<J
To be analytic m must be an integer

To preserve antisymmetry m must be odd
111

V= —, —,—....
35T
In the plasma analogy the electron density 1s

1 1
m 27?1%

mnn —

Other wave-functions developed to describe more
general states in the hierarchy of rational filling
factors at which quantized Hall plateaus were
observed




Plasma Analogy (1)

2D system
Qr

/ds-E:27TQ E(r) = —

r

e Hence, potential energy among a group of objects with charge m 1s

—m? 3" (In 2 — z))
i<j
e Second term in U (Poissons Equation)

L 9
—V22 z|" =
7 17l




Plasma Analogy (II)
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™m
U=m? 3 (~Infei = z)) + 5 3 |l

]

Potential energy of interaction Energy of charge m objects
among a group of objects interacting with negative
with charge m background

Background charge
> density B/¢o

1 1
m 2%1%

Area containing one

2 i
2ml flux quantum

Neutrality =g 1M + pp = () =—— 1 =

For a filled LL, with m =1, this 1s the correct answer for the density,
since every single-particle state 1s occupied and there is one state per
flux quantum




Excitation Gap? B Iremp

Every pair of particles has a relative angular momentum greater than
or equal to m

Because the relative angular momentum of a pair can change only in
discrete (even integer) units it turns out that a hard core, repulsion,
model has an excitation gap

For example for m = 3, any excitation out of the Laughlin ground
state weakens the nearly i1deal correlations by forcing at least one pair

of particles to have relative angular momentum / instead of 3.

This costs energy: hence a gap s

Magnetic field (T)
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Importance

Two Nobel Prizes
IQHE 1985 (Klaus von Klitzing);
FQHE 1998 (Robert Laughlin, Horst Stormer and Daniel Tsui)

The value of the resistance at the plateaus only depends on
fundamental constants of physics: electric charge (e) and Planck’s

constant (h)
It 1s accurate to 1 part in 100000000

The IQHE 1s used as the primary resistance standard (although 1
klitzing (h/e’) is 25,813 Ohms)




LLL One Body States (2 = 0)

Harmonic oscillator
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HO — hw_l_ (CLZ_CL_'_ + ClJr_CL_ -+ 1)

1 X _|_Z.pa:dJ_ a. —
2 \d, h v

X _Z-p:vdj_ CLT _
V2 \d, h y

Angular momentum

L,=xp, —yp, = h (a1a+ —a’ _)

Create and destroy one quantum with positive (negative) circular
polarization and one unit of positive (negative) angular momentum




LLL One Body States (€2 # 0)

Rotating system
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H(’):HO—QLZ:th%—h(wL—Q)alcur%—h(wl%—ﬁ)aia_

Eigenvalues

eny,n_)=nyh(w, —Q)+hn_ (wp +Q)
Landau Levels

() »w, == Eigenvalues are essentially independent of 7+

l

n. becomes the Landau Level index




* The excitation energy 1s independent of m forming an inverted
pyramid of states. For each non-negative integer n there are n +1
degenerate angular momentum states (-z ... n, in steps of 2)

e The degeneracy is lifted

e States become nearly degenerate again, forming essentially
horizontal rows.




LLL One Body States (Q= 1)  *

LLL Physics appropriate when
() / W] ~ 1

Energy scales

Gap =—>» 2h
P . oL » pn/ (2hw, ) < 1
Interaction energy =3 gn(0) = p

Eigenfunctions of LLL
W O P pim ,—r? /(2d7)
e m =0 represents the vacuum for both circularly polarized modes
e The higher states (m >0) can be written as

Wy X Cme_TZ/@di), where ( = (z + iy)/d




Rotation and Magnetic field
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2

1
H) = —|—2ij_7“ —Q-rxp

2
p— MSQ xXr) 1

Synthetic vector potential
gA — M) xr/y qgA = M), (—y§+azj)
QO = kO, /B V x A

B=VxA=2Q,M/q







LLL Condensate Wavefunction %
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wLLL _ Z mem _ f(C)e—T2/(2di)

m>0

fO o] [€=¢)

e f({) vanishes at each of the points {; which are the positions of the
nodes of the condensate wave-function

e The phase of this wave-function increases by 2z whenever ¢ moves 1n
the positive sense around any of these zeros

e Thus the points ; are precisely the positions of the vortices in the
trial state and minimization with respect to the constants ¢ 1s
effectively the same as minimization with respect to the position of
the vortices: vortex lattice




Energy Minimization
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P 1 1

Q) 1

E Y] = Q2+ /d27“ [Mu}i (1 — M) 2 WLLL‘2 + 592D‘¢LLL’4

Unrestricted minimization

r

2
min|2 = 1 (0) (1 - R%>

8aN (1 —
Lhmin = \/ - (Z ), where Z = 27d.,




LLL Condition (Unrestricted)
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Unrestricted minimization!!
What about vortices?




Highly Correlated States (v)
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e At higher rotation frequencies the meanfield LLL regime should
eventually disappear through a quantum phase transition, leading to a
different, highly correlated, manybody ground state.

e For meanfield LLL regime

NNR—%— SNafl
Codl \za-Q




Exact Diagonalization (v > v.)
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The equilibrium state in the meanfield LLL regime is a vortex array

that breaks the rotational symmetry and 1s not an eigenstate of L.

Could use exact diagonalisation to study the ground state for
increasing N,

Studies have investigated different filling fractions, v, from 0.5 to 9.

Comparison between the meanfield LLL energy and exact
diagonalization show that the meanfield vortex lattice 1s a ground
state for v > v. (ve =6)

Hence the meanfield LLL regime 1s valid for (ve =1)




Exact Diagonalization (v < v.)
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The groundstates are rotationally symmetric incompressible vortex
liquids that are eigenstates of L.

They have close similarities to the bosonic analogs of the Jain
sequence of fractional quantum Hall states

The simplest of these many body ground states 1s the bosonic
Laughlin state
H 1N [, 2

n<n’

No off-diagonal long range order and hence no BEC

The Laughlin state vanishes whenever two particles come together,
enforcing the many-body correlations

The short range two body potential has zero expectation value 1n this
correlated state

Strong overlap between exact diagonalization and the Laughlin state
(v =1/2)




Physics of Transition

Consider N bosonic particles in a plane, with 2N degrees of freedom
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Vortices appear as the system rotates and the corresponding vortex
coordinates provide N, collective degrees of freedom

For slowly rotating systems the 2N particle coordinates provide a
convenient description

In principle, the N, collective vortex degrees of freedom should

reduce the original total 2N degrees of freedom to 2N - N, , but this is
unimportant as long as N, << N

When N, becomes comparable with N the depletion of the particle
degrees of freedom becomes crucial

This depletion on the particle degrees of freedom drives the phase
transition to a wholly new ground state

Hence when v =N/N, 1s small a transition 1s expected




